Effect of LES closures on the entrainment of a passive scalar in a turbulent planar jet

Author(s):  
D. C. Lopes ◽  
Carlos B. da Silva ◽  
R. J. N. dos Reis ◽  
V. Raman
Keyword(s):  
2014 ◽  
Vol 26 (10) ◽  
pp. 105103 ◽  
Author(s):  
T. Watanabe ◽  
Y. Sakai ◽  
K. Nagata ◽  
Y. Ito ◽  
T. Hayase

2015 ◽  
Vol 16 (4) ◽  
pp. 342-366 ◽  
Author(s):  
Carlos B. da Silva ◽  
Diogo C. Lopes ◽  
Venkat Raman

AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 1509-1516 ◽  
Author(s):  
C. Le Ribault ◽  
S. Sarkar ◽  
S. A. Stanley

2021 ◽  
Vol 920 ◽  
Author(s):  
Masato Hayashi ◽  
Tomoaki Watanabe ◽  
Koji Nagata

Abstract


2021 ◽  
Vol 33 (5) ◽  
pp. 055126
Author(s):  
M. Hayashi ◽  
T. Watanabe ◽  
K. Nagata
Keyword(s):  

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 401
Author(s):  
Jonathan Biehl ◽  
Bastian Paas ◽  
Otto Klemm

City centers have to cope with an increasing amount of air pollution. The supply of fresh air is crucial yet difficult to ensure, especially under stable conditions of the atmospheric boundary layer. This case study used the PArallelized Large eddy simulation (LES) Model PALM to investigate the wind field over an urban lake that had once been built as a designated fresh air corridor for the city center of Münster, northwest, Germany. The model initialization was performed using the main wind direction and stable boundary layer conditions as input. The initial wind and temperature profiles included a weak nocturnal low-level jet. By emitting a passive scalar at one point on top of a bridge, the dispersion of fresh air could be traced over the lake’s surface, within street canyons leading to the city center and within the urban boundary layer above. The concept of city ventilation was confirmed in principle, but the air took a direct route from the shore of the lake to the city center above a former river bed and its adjoining streets rather than through the street canyons. According to the dispersion of the passive scalar, half of the city center was supplied with fresh air originating from the lake. PALM proved to be a useful tool to study fresh air corridors under stable boundary layer conditions.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document