scale shear
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 38)

H-INDEX

26
(FIVE YEARS 3)

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 6) ◽  
Author(s):  
Gautam Ghosh ◽  
Proloy Ganguly ◽  
Shuvankar Karmakar ◽  
Sankar Bose ◽  
Joydip Mukhopadhyay ◽  
...  

Abstract A number of crustal-scale shear zones have developed along the southern margin of the Singhbhum Craton, in the boundary with the Neoarchean Rengali Province and the Meso-Neoproterozoic Eastern Ghats Belt. The cratonic part, evolved in a suprasubduction zone setting, bears imprints of late Mesoarchean orogenic episode (D1C) at ca. 3.1 Ga with folding and thrust imbrication of the cratonic rocks. The succeeding orogenic imprint is etched in the Neoarchean (~2.8 Ga) with development of the Sukinda thrust along the craton margin and thrust-related deformation of the rocks of the Rengali Province (D2C-D1R). The latter event remobilized cratonic fringe with development of a spectacular E-W trending transpressional belt in the Southern Iron Ore Group rocks cored by the Sukinda ultramafics. In the Eastern Ghats Belt, the major ultrahigh-temperature orogeny took place during the Grenvillian-age (~1.0-0.9 Ga) assembly of the supercontinent Rodinia. This belt eventually got juxtaposed against the expanded Singhbhum Craton in the end-Neoproterozoic time (~0.5 Ga) along the Kerajang Fault Zone. This latter event remobilized a large part of the Rengali Province (D2R) with development of an intraterrane transpressional belt bounded by the Barkot Shear Zone in the north. The northern fringe of the intruding Eastern Ghats Belt developed a complex network of strike-slip fault system under this impact, probably an outcome of tectonic activity along the Kuunga suture, which signifies the joining of greater India with East Antarctica. The present synthesis visualizes early development in the craton through formation of a typical orogenic sequence, imbricated in thrust piles, resulting from a ca. 3.1 Ga orogeny. Further cratonic expansion was achieved via repetitive accretion and remobilization, development of crustal-scale faults and transpressional belts at ca. 2.8 Ga and ca. 0.5 Ga, much in a similar fashion as documented along oblique convergent margins of all ages.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Han Gil Choi ◽  
Chanung Park ◽  
Sunghoon Jung

Author(s):  
Raana Razavi-Pash ◽  
Moslem Ghavam-Abadi ◽  
Farhad Mohammadi ◽  
Ali Sholeh
Keyword(s):  

2021 ◽  
Vol 920 ◽  
Author(s):  
Masato Hayashi ◽  
Tomoaki Watanabe ◽  
Koji Nagata

Abstract


Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 185
Author(s):  
Fabrizio Piana ◽  
Luca Barale ◽  
Carlo Bertok ◽  
Anna d’Atri ◽  
Andrea Irace ◽  
...  

In SW Piemonte the Western Alps arc ends off in a narrow, E-W trending zone, where some geological domains of the Alps converged. Based on a critical review of available data, integrated with new field data, it is concluded that the southern termination of Western Alps recorded the Oligocene-Miocene activity of a regional transfer zone (southwestern Alps Transfer, SWAT) already postulated in the literature, which should have allowed, since early Oligocene, the westward indentation of Adria, while the regional shortening of SW Alps and tectonic transport toward the SSW (Dauphinois foreland) was continuing. This transfer zone corresponds to a system of deformation units and km-scale shear zones (Gardetta-Viozene Zone, GVZ). The GVZ/SWAT developed externally to the Penninic Front (PF), here corresponding to the Internal Briançonnais Front (IBF), which separates the Internal Briançonnais domain, affected by major tectono-metamorphic transformations, from the External Briançonnais, subjected only to anchizonal metamorphic conditions. The postcollisional evolution of the SW Alps axial belt units was recorded by the Oligocene to Miocene inner syn-orogenic basin (Tertiary Piemonte Basin, TPB), which rests also on the Ligurian units stacked within the adjoining Apennines belt in southern Piemonte. The TPB successions were controlled by transpressive faults propagating (to E and NE) from the previously formed Alpine belt, as well as by the Apennine thrusts that were progressively stacking the Ligurian units, resting on the subducting Adriatic continental margin, with the TPB units themselves. This allows correlation between Alps and Apennines kinematics, in terms of age of the main geologic events, interference between the main structural systems and tectonic control exerted by both tectonic belts on the same syn-orogenic basin.


2021 ◽  
Author(s):  
Matteo Simonetti ◽  
Rodolfo Carosi ◽  
Chiara Montomoli ◽  
Salvatore Iaccarino

<p>Paleogeographic reconstruction and recognition of the tectono-metamorphic evolution of ancient orogenic belt is often complex. The combination of an adequate amount of paleomagnetic, metamorphic, structural and geochronological data is necessary. Fundamental data derive from the study of regional-scale shear zones, that can be directly observed, by combining detailed field work with structural analysis, microstructural analysis and petrochronology. The Southern European Variscan Belt in the Mediterranean area was partially overprinted by the Alpine cycle (Stampfli and Kozur, 2006) and correlations are mainly based on lithological similarities. Little attention has been paid to the compatibility of structures in the dispersed fragments. A main debate is the connection among the Corsica-Sardinia Block (CSB), the Maures-Tanneron Massif (MTM) and the future Alpine External Crystalline Massifs (ECM) (Stampfli et al., 2002; Advokaat et al., 2014) and if these sectors were connected by a network of shear zones of regional extent, known as the East Variscan Shear Zone (EVSZ).</p><p>We present a multidisciplinary study of shear zones cropping out in the CSB (the Posada-Asinara shear zone; Carosi et al., 2020), in the MTM (the Cavalaire Fault; Simonetti et al., 2020a) and in the ECM (the Ferriere-Mollières and the Emosson-Berard shear zones; Simonetti et al., 2018; 2020b).</p><p>Kinematic and finite strain analysis allowed to recognize a transpressional deformation, with a major component of pure shear and a variable component of simple shear, coupled with general flattening deformation. Syn-kinematic paragenesis, microstructures and quartz c-axis fabrics revealed that shear deformation, in all the studied sectors, occurred under decreasing temperature starting from amphibolite-facies up to greenschist-facies. A systematic petrochronological study (U-Th-Pb on monazite collected in the sheared rocks) was conducted in order to constrain the timing of deformation. We obtained ages ranging between ~340 Ma and ~320 Ma. Ages of ~340-330 Ma can be interpreted as the beginning of the activity of the EVSZ along its older branches while ages of ~320 Ma, obtained in all the shear zones, demonstrate that they were all active in the same time span.</p><p>The multidisciplinary approach revealed a similar kinematics and tectono-metamorphic evolution of the studied shear zones contributing to better constrain the extension and timing the EVSZ and to strength the paleogeographic reconstructions of the Southern Variscan belt during Late Carboniferous time, with important implications on the evolution of the Mediterranean area after the Late Paleozoic. This case study demonstrates how paleogeographic reconstructions could benefit from datasets obtained from large-scale structures (i.e., shear zones) that can be directly investigated.</p><p> </p><p>Advokaat et al. (2014). Earth and Planetary Science Letters 401, 183–195</p><p> </p><p>Carosi et al. (2012). Terra Nova 24, 42–51</p><p> </p><p>Carosi and Palmeri (2002). Geological Magazine 139.</p><p> </p><p>Carosi et al. (2020). Geosciences 10, 288.</p><p> </p><p>Simonetti et al (2020a). International Journal of Earth Sciences 109, 2261–2285</p><p> </p><p>Simonetti et al. (2020b). Tectonics 39</p><p> </p><p>Simonetti et al. (2018). International Journal of Earth Sciences. 107, 2163–2189</p><p> </p><p>Stampfli and Kozur (2006). Geological Society, London, Memoirs 32, 57–82</p><p> </p><p>Stampfli et al. (2002). Journal of the Virtual Explorer 8, 77</p>


2021 ◽  
Author(s):  
Jonas Vanardois ◽  
Pierre Trap ◽  
Didier Marquer

<p>The causes for heterogeneous deformation with strain partitioning into kilometre-scale shear zone within the partially molten crust and the spatiotemporal feedback relationships between strain localization and melt organization still remain unclear. In order to tackle these questions and unravel the strain localization in a partially molten crustal scale shear zone, we used field observations and thermodynamic modelling in the Eastern Variscan Shear Zone (EVSZ) located in the Aiguille-Rouge massif (Western Alps). The EVSZ is an orogen scale, 10 km wide and 600 km long, transpressional high strain corridor recognized in the French External Crystalline Massifs. The EVSZ affected the partially-molten late Variscan crust during late Carboniferous times (340-300 Ma). In this contribution we present a detailed field-map survey of the mid- and lower crusts focussed on the partitioning and strain pattern in the Aiguille-Rouge EVSZ. Detailed mapping revealed that high-strain deformation domains and orthogneiss occurrences are spatially related. New petrological, thermobarometrical and LA-ICP-MS dating also better constrain the P-T-t-D evolution of the partially molten crust along the EVSZ. Field observations and P-T pseudosection calculations show that among the three dominant lithologies forming the mid- and lower-crusts, i.e. metapelite, metagreywacke and orthogneiss, the latter is the most fertile if considering H2O-fluid-saturated melting. During prograde evolution at pressure between-12-15 kbar, orthogneisses reached the solidus at lower temperature and produced higher melt fraction than the metasedimentary rocks.  The water-present melting in the orthogneisses may have initiate strain localization at the end of the prograde evolution. Thus, the favoured localization of the shear zone within the metagranites is explained by a higher melt fraction than in the metapelites and metagreywackes. PTDt path and thermobarometrical modelling suggest that these transpressional deformation conditions occurred under suprasolidus conditions from at least 12 kbar to 4 kbar during a near isothermal decompression. During this cooling path, while crystallization of anatectic melts might have provoked strain hardening in the orthogneisses, a strength decrease might be controlled by a higher proportion of micas in metapelites and metagreywackes as suggested by forward modelling of modal proportion of mica. This change in the nature of the weakest phase, starting with melt in metagranites and followed by micas in metasedimentary rocks, seems to control the progressive localization and broadening of the crustal scale shear zone during clockwise P-T-t path. Our results suggest that H2O-fluid-saturated melting of metagranites has a first order rheological impact on the birth and growth of the orogen scale shear zone in the lower continental crust.</p>


Sign in / Sign up

Export Citation Format

Share Document