MIXED CONVECTION MELTING OF A LOW PRANDTL NUMBER SUBSTANCE INSIDE A RECTANGULAR CAVITY

Author(s):  
Marcel Lacroix
2008 ◽  
Vol 11 (8) ◽  
pp. 791-801 ◽  
Author(s):  
P. Kandaswamy ◽  
M. Muthtamilselvan ◽  
J. Lee

2009 ◽  
Vol 50 (3) ◽  
pp. 626-635 ◽  
Author(s):  
A. Bahlaoui ◽  
A. Raji ◽  
M. Hasnaoui ◽  
M. Naïmi ◽  
T. Makayssi ◽  
...  

2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 13-23
Author(s):  
Zia Ullah ◽  
Muammad Ashraf ◽  
Saqib Zia ◽  
Ishtiaq Ali

The present phenomena address the slip velocity effects on mixed convection flow of electrically conducting fluid with surface temperature and free stream velocity oscillation over a non-conducting horizontal cylinder. To remove the difficulties in illustrating the coupled PDE, the primitive variable formulation for finite dif?ference technique is proposed to transform dimensionless equations into primitive form. The numerical simulations of coupled non-dimensional equations are exam?ined in terms of fluid slip velocity, temperature, and magnetic velocity which are used to calculate the oscillating components of skin friction, heat transfer, and cur?rent density for various emerging parameters magnetic force parameter, ?, mixed convection parameter, ?, magnetic Prandtl number, ?, Prandtl number, and slip factor, SL. It is observed that the effect of slip flow on the non-conducting cylinder is reduced the fluid motion. A minimum oscillating behavior is noted in skin friction at each position but maximum amplitude of oscillation in heat transfer is observed at each position ? = ?/4 and 2?/3. It is further noticed that a fluid velocity increas?es sharply with the impact of slip factor on the fluid-flow mechanism. Moreover, due to frictional forces with lower magnitude between viscous layers, the rise in Prandtl number leads to decrease in skin fiction and heat transfer which is physi?cally in good agreement.


2000 ◽  
Vol 422 ◽  
pp. 141-166 ◽  
Author(s):  
YI-CHUNG SU ◽  
JACOB N. CHUNG

A comprehensive numerical study on the linear stability of mixed-convection flow in a vertical pipe with constant heat flux is presented with particular emphasis on the instability mechanism and the Prandtl number effect. Three Prandtl numbers representative of different regimes in the Prandtl number spectrum are employed to simulate the stability characteristics of liquid mercury, water and oil. The results suggest that mixed-convection flow in a vertical pipe can become unstable at low Reynolds number and Rayleigh numbers irrespective of the Prandtl number, in contrast to the isothermal case. For water, the calculation predicts critical Rayleigh numbers of 80 and −120 for assisted and opposed flows, which agree very well with experimental values of Rac = 76 and −118 (Scheele & Hanratty 1962). It is found that the first azimuthal mode is always the most unstable, which also agrees with the experimental observation that the unstable pattern is a double spiral flow. Scheele & Hanratty's speculation that the instability in assisted and opposed flows can be attributed to the appearance of inflection points and separation is true only for fluids with O(1) Prandtl number. Our study on the effect of the Prandtl number discloses that it plays an active role in buoyancy-assisted flow and is an indication of the viability of kinematic or thermal disturbances. It profoundly affects the stability of assisted flow and changes the instability mechanism as well. For assisted flow with Prandtl numbers less than 0.3, the thermal–shear instability is dominant. With Prandtl numbers higher than 0.3, the assisted-thermal–buoyant instability becomes responsible. In buoyancy-opposed flow, the effect of the Prandtl number is less significant since the flow is unstably stratified. There are three distinct instability mechanisms at work independent of the Prandtl number. The Rayleigh–Taylor instability is operative when the Reynolds number is extremely low. The opposed-thermal–buoyant instability takes over when the Reynolds number becomes higher. A still higher Reynolds number eventually leads the thermal–shear instability to dominate. While the thermal–buoyant instability is present in both assisted and opposed flows, the mechanism by which it destabilizes the flow is completely different.


1996 ◽  
Vol 2 (3) ◽  
pp. 161-166 ◽  
Author(s):  
Chyi-Yeou Soong

Prandtl number characterizes the competition of viscous and thermal diffusion effects and, therefore, is an influential factor in thermal-fluid flows. In the present study, the Prandtl number effects on non-isothermal flow and heat transfer between two infinite coaxial disks are studied by using a similarity model for rotation-induced mixed convection. To account for the buoyancy effects, density variation in Coriolis and centrifugal force terms are considered by invoking Boussinesq approximation and a linear density-temperature relation. Co-rotating disks(Ω2=Ω1)and rotor-stator system(Ω1≠Ω2=0)are considered to investigate the free and mixed convection flows, respectively. For Reynolds number, Re, up to 1000 and the buoyancy parameter, B=βΔT, of the range of|B|≤0.05, the flow and heat transfer characteristics with Prandtl numbers of 100, 7, 0.7, 0.1, and 0.01 are examined. The results reveal that the Prandtl number shows significant impact on the fluid flow and heat transfer performance. In the typical cases of mixed convection in a rotor-stator system with|B|=0.05, the effects in buoyancy-opposed flowsB=0.05are more pronounced than that in buoyancy-assisted ones.


Sign in / Sign up

Export Citation Format

Share Document