Linear stability analysis of mixed-convection flow in a vertical pipe

2000 ◽  
Vol 422 ◽  
pp. 141-166 ◽  
Author(s):  
YI-CHUNG SU ◽  
JACOB N. CHUNG

A comprehensive numerical study on the linear stability of mixed-convection flow in a vertical pipe with constant heat flux is presented with particular emphasis on the instability mechanism and the Prandtl number effect. Three Prandtl numbers representative of different regimes in the Prandtl number spectrum are employed to simulate the stability characteristics of liquid mercury, water and oil. The results suggest that mixed-convection flow in a vertical pipe can become unstable at low Reynolds number and Rayleigh numbers irrespective of the Prandtl number, in contrast to the isothermal case. For water, the calculation predicts critical Rayleigh numbers of 80 and −120 for assisted and opposed flows, which agree very well with experimental values of Rac = 76 and −118 (Scheele & Hanratty 1962). It is found that the first azimuthal mode is always the most unstable, which also agrees with the experimental observation that the unstable pattern is a double spiral flow. Scheele & Hanratty's speculation that the instability in assisted and opposed flows can be attributed to the appearance of inflection points and separation is true only for fluids with O(1) Prandtl number. Our study on the effect of the Prandtl number discloses that it plays an active role in buoyancy-assisted flow and is an indication of the viability of kinematic or thermal disturbances. It profoundly affects the stability of assisted flow and changes the instability mechanism as well. For assisted flow with Prandtl numbers less than 0.3, the thermal–shear instability is dominant. With Prandtl numbers higher than 0.3, the assisted-thermal–buoyant instability becomes responsible. In buoyancy-opposed flow, the effect of the Prandtl number is less significant since the flow is unstably stratified. There are three distinct instability mechanisms at work independent of the Prandtl number. The Rayleigh–Taylor instability is operative when the Reynolds number is extremely low. The opposed-thermal–buoyant instability takes over when the Reynolds number becomes higher. A still higher Reynolds number eventually leads the thermal–shear instability to dominate. While the thermal–buoyant instability is present in both assisted and opposed flows, the mechanism by which it destabilizes the flow is completely different.

1998 ◽  
Vol 120 (1) ◽  
pp. 127-132 ◽  
Author(s):  
Y.-C. Chen ◽  
J. N. Chung

In this study, the linear stability of mixed convection in a differentially heated vertical channel is investigated for various Prandtl numbers. The results indicate that this fully developed heated flow can become unstable under appropriate conditions. It is found that both the Prandtl number and Reynolds number hold very important effects on the critical Grashof number, wave number, wave speed, and instability mechanism for higher Prandtl numbers. For low Prandtl numbers, the effects from the Prandtl number and Reynolds number are relatively small. The most significant finding is that the local minimum wave numbers can be as high as eight for Pr = 1000, which is substantially higher than those found before for other heated flows. The existence of multiple local minimum wave numbers is responsible for the sudden jumps of the critical wave number and wave speed and the sudden shift of instability type for higher Prandtl numbers. The energy budget analysis shows that the thermal-shear and shear instabilities dominate at both low and high Reynolds numbers for Pr = 0.7 and 7. It is the thermal-buoyant instability for Re < 1365 and shear instability for Re ≥ 1365 for Pr = 100. The thermal-buoyant and mixed instabilities are the possible instability types for Pr = 1000. In general, for mixed convection channel flows, the instability characteristics of differentially heated flows are found to be substantially different from those of uniformly heated flows.


2014 ◽  
Vol 5 (3) ◽  
pp. 859-870
Author(s):  
Prabhugouda Patil ◽  
S. Roy

The steady mixed convection flow from a moving vertical plate in a parallel free stream is considered to investigate the combined effects of buoyancy force and thermal diffusion in presence of thermal radiation as well as Newtonian heating effects. The governing boundary layer equations are transformed into a non-dimensional form by a group of non-similar transformations. The resulting system of coupled non-linear partial differential equations is solved by an implicit finite difference scheme in conjunction with the quasi-linearization technique. Computations are performed and representative set is displayed graphically to illustrate the influence of the mixed convection parameter ( ), Prandtl number (Pr), the ratio of free stream velocity to the composite reference velocity ( ) and the radiation parameter (R) on the velocity and temperature profiles. The numerical results for the local skinfriction coefficient ( ) and surface temperature ( ) are also presented. The results show that the streamwise co-ordinate  significantly influences the flow and thermal fields which indicate the importance of non-similar solutions. Also, it is observed that the increase of mixed convection parameter causes the increase in the magnitude of velocity profile about 65% for lower Prandtl number fluids (Pr=0.7), while it decreases in the temperature profile about 30%. Present results are compared with previously published work and are found to be in excellent agreement.


2017 ◽  
Vol 377 ◽  
pp. 166-179 ◽  
Author(s):  
Oluwole Daniel Makinde ◽  
Lazarus Rundora

In the current paper, we investigate the thermal decomposition in an unsteady mixed convection flow of a reactive Casson fluid in a vertical channel filled with a saturated porous medium. The channel walls are assumed to be permeable with fluid injection through the left wall and suction out of the right wall. There is heat dissipation caused by exothermic chemical reaction within the flow system. The dimensionless form of the momentum and energy equations will be solved numerically using a semi-discretization finite difference method and a fourth order Runge-Kutta-Fehlberg integration scheme. The influence of the Casson fluid parameter, the buoyancy parameter, the porous medium shape parameter, the Eckert number, the suction/injection Reynolds number, Frank-Kamenetskii parameter and the Prandtl number on velocity and temperature profiles, skin friction and Nusselt number as well as the thermal stability criteria are presented graphically and discussed quantitatively. It is revealed that increasing the Casson fluid parameter enhances the flow velocity, the fluid temperature and the skin friction but has a diminishing effect on the wall heat transfer rate. The suction/injection Reynolds number, the porous medium shape parameter and the buoyancy parameter enhance the rate of heat transfer at the channel walls.


2015 ◽  
Vol 12 (1) ◽  
pp. 21-32
Author(s):  
Mohammed Nasir Uddin ◽  
Aki Farhana ◽  
Md. Abdul Alim

In the present paper, the effect of magneto-hydrodynamic (MHD) on mixed convection flow within a lid-driven triangular cavity has been numerically investigated. The bottom wall of the cavity is considered as heated. Besides, the left and the inclined wall of the triangular cavity are assumed to be cool and adiabatic. The cooled wall of the cavity is moving up in the vertical direction. The developed mathematical model is governed by the coupled equations of continuity, momentum and energy to determine the fluid flow and heat transfer characteristics in the cavity as a function of Rayleigh number, Hartmann number and the cavity aspect ratio. The present numerical procedure adopted in this investigation yields consistent performance over a wide range of parameters Rayleigh number Ra (103-104), Prandtl number Pr (0.7 - 3) and Hartmann number Ha (5 - 50). The numerical results are presented in terms of stream functions, temperature profile and Nussult numbers. It is found that the streamlines, isotherms, average Nusselt number, average fluid bulk temperature and dimensionless temperature in the cavity strongly depend on the Rayleigh number, Hartmann number and Prandtl number.


2021 ◽  
Vol 406 ◽  
pp. 36-52
Author(s):  
Sofiane Boulkroune ◽  
Omar Kholai ◽  
Brahim Mahfoud

Combined free and forced convection in a square cavity filled with a viscous fluid characterized by a small Prandtl number is studied numerically. The left wall is moving with a constant velocity v and is maintained at a local cold temperature Tc, while the right wall is fixed and maintained at a local hot temperature Th (Tc <Th). The top and bottom walls of the cavity is assumed to be adiabatic. The governing Navier-Stokes, and energy equations along with appropriate boundary conditions are solved using the finite-volume method. The flow and temperature fields are presented by stream function and isotherms, respectively. The effects of important parameters such as Reynolds number, Prandtl number, and Grashof number on the transition from forced convection to mixed convection are investigated. Results indicate that increasing Reynolds number results to fluid acceleration and, thus, to flow transition. Results also show that Grashof and Prandtl's numbers influenced the conditions for the transition to the mixed convection regime.


Sign in / Sign up

Export Citation Format

Share Document