Classification of Simple Closed Geodesics on Rectangular Prisms

2013 ◽  
Vol 13 (1) ◽  
pp. 99-121
Author(s):  
James L. Parish
2004 ◽  
Vol 06 (05) ◽  
pp. 781-792 ◽  
Author(s):  
MEIJUN ZHU

We show that the sharp constants of Poincaré–Sobolev inequalities for any smooth two dimensional Riemannian manifold are less than or equal to [Formula: see text]. For a smooth topological two sphere M2, the sharp constants are [Formula: see text] if and only if M2 is isometric to two sphere S2 with the standard metric. In the same spirit, we show that for certain special smooth topological sphere the ratio between the shortest length of simple closed geodesics and the square root of its area is less than or equals to [Formula: see text].


1994 ◽  
Vol 116 (2) ◽  
pp. 339-351
Author(s):  
Kerry N. Jones ◽  
Alan W. Reid

AbstractChinburg and Reid have recently constructed examples of hyperbolic 3-manifolds in which every closed geodesic is simple. These examples are constructed in a highly non-generic way and it is of interest to understand in the general case the geometry of and structure of the set of closed geodesics in hyperbolic 3-manifolds. For hyperbolic 3-manifolds which contain immersed totally geodesic surfaces there are always non-simple closed geodesics. Here we construct examples of manifolds with non-simple closed geodesics and no totally geodesic surfaces.


1992 ◽  
Vol 36 (3) ◽  
pp. 517-549 ◽  
Author(s):  
Eugenio Calabi ◽  
Jian Guo Cao

2009 ◽  
Vol 87 (2) ◽  
pp. 275-288 ◽  
Author(s):  
C. ZHANG

AbstractLet S be a Riemann surface of finite type. Let ω be a pseudo-Anosov map of S that is obtained from Dehn twists along two families {A,B} of simple closed geodesics that fill S. Then ω can be realized as an extremal Teichmüller mapping on a surface of the same type (also denoted by S). Let ϕ be the corresponding holomorphic quadratic differential on S. We show that under certain conditions all possible nonpuncture zeros of ϕ stay away from all closures of once punctured disk components of S∖{A,B}, and the closure of each disk component of S∖{A,B} contains at most one zero of ϕ. As a consequence, we show that the number of distinct zeros and poles of ϕ is less than or equal to the number of components of S∖{A,B}.


Sign in / Sign up

Export Citation Format

Share Document