quadratic differentials
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 26)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Dmitry Korotkin ◽  
◽  
Peter Zograf ◽  

The Bergman tau functions are applied to the study of the Picard group of moduli spaces of quadratic differentials with at most n simple poles on genus g complex algebraic curves. This generalizes our previous results on moduli spaces of holomorphic quadratic differentials.


2021 ◽  
Vol 21 (4) ◽  
pp. 483-504
Author(s):  
Alvaro Alvarez-Parrilla ◽  
Jesús Muciño-Raymundo

Abstract We consider the family ℰ (s, r, d) of all singular complex analytic vector fields X ( z ) = Q ( z ) P ( z ) e E ( z ) ∂ ∂ z $X(z)=\frac{Q(z)}{P(z)}{{e}^{E(z)}}\frac{\partial }{\partial z}$ on the Riemann sphere where Q, P, ℰ are polynomials with deg Q = s, deg P = r and deg ℰ = d ≥ 1. Using the pullback action of the affine group Aut(ℂ) and the divisors for X, we calculate the isotropy groups Aut(ℂ) X of discrete symmetries for X ∈ ℰ (s, r, d). The subfamily ℰ (s, r, d)id of those X with trivial isotropy group in Aut(ℂ) is endowed with a holomorphic trivial principal Aut(ℂ)-bundle structure. A necessary and sufficient arithmetic condition on s, r, d ensuring the equality ℰ (s, r, d) = ℰ (s, r, d)id is presented. Moreover, those X ∈ ℰ (s, r, d) \ ℰ (s, r, d)id with non-trivial isotropy are realized. This yields explicit global normal forms for all X ∈ ℰ (s, r, d). A natural dictionary between analytic tensors, vector fields, 1-forms, orientable quadratic differentials and functions on Riemann surfaces M is extended as follows. In the presence of nontrivial discrete symmetries Γ < Aut(M), the dictionary describes the correspondence between Γ-invariant tensors on M and tensors on M /Γ.


Author(s):  
Chien-Hsun Wang

We study stability conditions on the Calabi–Yau-[Formula: see text] categories associated to an affine type [Formula: see text] quiver which can be constructed from certain meromorphic quadratic differentials with zeroes of order [Formula: see text]. We follow Ikeda’s work to show that this moduli space of quadratic differentials is isomorphic to the space of stability conditions quotient by the spherical subgroup of the autoequivalence group. We show that the spherical subgroup is isomorphic to the braid group of affine type [Formula: see text] based on the Khovanov–Seidel–Thomas method.


Author(s):  
Maxim Kazarian

Abstract We derive a quadratic recursion relation for the linear Hodge integrals of the form $\langle \tau _{2}^{n}\lambda _{k}\rangle $ . These numbers are used in a formula for Masur-Veech volumes of moduli spaces of quadratic differentials discovered by Chen, Möller and Sauvaget. Therefore, our recursion provides an efficient way of computing these volumes.


Sign in / Sign up

Export Citation Format

Share Document