scholarly journals Optimal Active and Reactive Power Dispatch Problem Solution using Whale Optimization Algorithm

2016 ◽  
Vol 9 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R. H. Bhesdadiya
2020 ◽  
Vol 53 (1-2) ◽  
pp. 239-249 ◽  
Author(s):  
Pradeep Panthagani ◽  
R Srinivasa Rao

Optimal reactive power dispatch is one of the key factors to attain cost-effective and stable functioning of power system. It is a complicated non-linear optimization issue with a combination of discrete and continuous control variables. Due to this complex feature of optimal reactive power dispatch, optimization technique has become an efficient method to solve this problem. In this work, Kinetic Gas Molecule Optimization algorithm with Pareto optimality is proposed for solving multi-objective optimal reactive power dispatch problem. The presentation of Kinetic Gas Molecule Optimization is improved by computing inertia weight and acceleration coefficients dynamically rather than a fixed value. Because of this reason, the searching capability of the particles in each iteration is improved. However, to improve the power system performance in optimal reactive power dispatch scenario, additional flexible AC transmission system devices like static VAR compensator, thyristor-controlled series compensator, and unified power flow controller are introduced to provide stable results when compared to conventional output because flexible AC transmission system devices are capable of controlling the flow of real power and reactive power. These details are implemented and tested on IEEE 30-bus test system with various objectives. The performance of proposed method is validated from MATLAB, which shows the value of power loss as 4.3583 and voltage deviation as 0.26499 with cost of US$469.6417 per MVAR, which shows considerably superior results when compared with implemented particle swarm optimization results. The proposed method provides an efficient result for solving multi-objective optimal reactive power dispatch issues.


Sign in / Sign up

Export Citation Format

Share Document