scholarly journals Alphabet Sign Language Recognition Using K-Nearest Neighbor Optimization

2019 ◽  
pp. 63-70
Author(s):  
Fitri Utaminingrum
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Gamal Tharwat ◽  
Abdelmoty M. Ahmed ◽  
Belgacem Bouallegue

In recent years, the role of pattern recognition in systems based on human computer interaction (HCI) has spread in terms of computer vision applications and machine learning, and one of the most important of these applications is to recognize the hand gestures used in dealing with deaf people, in particular to recognize the dashed letters in surahs of the Quran. In this paper, we suggest an Arabic Alphabet Sign Language Recognition System (AArSLRS) using the vision-based approach. The proposed system consists of four stages: the stage of data processing, preprocessing of data, feature extraction, and classification. The system deals with three types of datasets: data dealing with bare hands and a dark background, data dealing with bare hands, but with a light background, and data dealing with hands wearing dark colored gloves. AArSLRS begins with obtaining an image of the alphabet gestures, then revealing the hand from the image and isolating it from the background using one of the proposed methods, after which the hand features are extracted according to the selection method used to extract them. Regarding the classification process in this system, we have used supervised learning techniques for the classification of 28-letter Arabic alphabet using 9240 images. We focused on the classification for 14 alphabetic letters that represent the first Quran surahs in the Quranic sign language (QSL). AArSLRS achieved an accuracy of 99.5% for the K-Nearest Neighbor (KNN) classifier.


2019 ◽  
Vol 7 (2) ◽  
pp. 43
Author(s):  
MALHOTRA POOJA ◽  
K. MANIAR CHIRAG ◽  
V. SANKPAL NIKHIL ◽  
R. THAKKAR HARDIK ◽  
◽  
...  

2016 ◽  
Vol 3 (3) ◽  
pp. 13
Author(s):  
VERMA VERSHA ◽  
PATIL SANDEEP B. ◽  
◽  

2020 ◽  
Vol 14 ◽  
Author(s):  
Vasu Mehra ◽  
Dhiraj Pandey ◽  
Aayush Rastogi ◽  
Aditya Singh ◽  
Harsh Preet Singh

Background:: People suffering from hearing and speaking disabilities have a few ways of communicating with other people. One of these is to communicate through the use of sign language. Objective:: Developing a system for sign language recognition becomes essential for deaf as well as a mute person. The recognition system acts as a translator between a disabled and an able person. This eliminates the hindrances in exchange of ideas. Most of the existing systems are very poorly designed with limited support for the needs of their day to day facilities. Methods:: The proposed system embedded with gesture recognition capability has been introduced here which extracts signs from a video sequence and displays them on screen. On the other hand, a speech to text as well as text to speech system is also introduced to further facilitate the grieved people. To get the best out of human computer relationship, the proposed solution consists of various cutting-edge technologies and Machine Learning based sign recognition models which have been trained by using Tensor Flow and Keras library. Result:: The proposed architecture works better than several gesture recognition techniques like background elimination and conversion to HSV because of sharply defined image provided to the model for classification. The results of testing indicate reliable recognition systems with high accuracy that includes most of the essential and necessary features for any deaf and dumb person in his/her day to day tasks. Conclusion:: It’s the need of current technological advances to develop reliable solutions which can be deployed to assist deaf and dumb people to adjust to normal life. Instead of focusing on a standalone technology, a plethora of them have been introduced in this proposed work. Proposed Sign Recognition System is based on feature extraction and classification. The trained model helps in identification of different gestures.


Author(s):  
Sukhendra Singh ◽  
G. N. Rathna ◽  
Vivek Singhal

Introduction: Sign language is the only way to communicate for speech-impaired people. But this sign language is not known to normal people so this is the cause of barrier in communicating. This is the problem faced by speech impaired people. In this paper, we have presented our solution which captured hand gestures with Kinect camera and classified the hand gesture into its correct symbol. Method: We used Kinect camera not the ordinary web camera because the ordinary camera does not capture its 3d orientation or depth of an image from camera however Kinect camera can capture 3d image and this will make classification more accurate. Result: Kinect camera will produce a different image for hand gestures for ‘2’ and ‘V’ and similarly for ‘1’ and ‘I’ however, normal web camera will not be able to distinguish between these two. We used hand gesture for Indian sign language and our dataset had 46339, RGB images and 46339 depth images. 80% of the total images were used for training and the remaining 20% for testing. In total 36 hand gestures were considered to capture alphabets and alphabets from A-Z and 10 for numeric, 26 for digits from 0-9 were considered to capture alphabets and Keywords. Conclusion: Along with real-time implementation, we have also shown the comparison of the performance of the various machine learning models in which we have found out the accuracy of CNN on depth- images has given the most accurate performance than other models. All these resulted were obtained on PYNQ Z2 board.


Sign in / Sign up

Export Citation Format

Share Document