scholarly journals On the Strong Law of Large Numbers for Nonnegative Random Variables. With an Application in Survey Sampling

2021 ◽  
Vol 50 (3) ◽  
pp. 1-12
Author(s):  
Tobias Schoch

Strong laws of large numbers with arbitrary norming sequences for nonnegative not necessarily independent random variables are obtained. From these results we establish, among other things, stability results for weighted sums of nonnegative random variables. A survey sampling application is provided on strong consistency of the Horvitz--Thompson estimator and the ratio estimator.

2012 ◽  
Vol 05 (01) ◽  
pp. 1250007
Author(s):  
Si-Li Niu ◽  
Jong-Il Baek

In this paper, we establish one general result on precise asymptotics of weighted sums for i.i.d. random variables. As a corollary, we have the results of Lanzinger and Stadtmüller [Refined Baum–Katz laws for weighted sums of iid random variables, Statist. Probab. Lett. 69 (2004) 357–368], Gut and Spătaru [Precise asymptotics in the law of the iterated logarithm, Ann. Probab. 28 (2000) 1870–1883; Precise asymptotics in the Baum–Katz and Davis laws of large numbers, J. Math. Anal. Appl. 248 (2000) 233–246], Gut and Steinebach [Convergence rates and precise asymptotics for renewal counting processes and some first passage times, Fields Inst. Comm. 44 (2004) 205–227] and Heyde [A supplement to the strong law of large numbers, J. Appl. Probab. 12 (1975) 173–175]. Meanwhile, we provide an answer for the possible conclusion pointed out by Lanzinger and Stadtmüller [Refined Baum–Katz laws for weighted sums of iid random variables, Statist. Probab. Lett. 69 (2004) 357–368].


2019 ◽  
Vol 69 (1) ◽  
pp. 223-232
Author(s):  
Xiaohan Bao ◽  
Junjie Lin ◽  
Xuejun Wang ◽  
Yi Wu

Abstract In this paper, the complete convergence for the weighted sums of arrays of rowwise extended negatively dependent (END, for short) random variables is established under some mild conditions. In addition, the Marcinkiewicz-Zygmund type strong law of large numbers for arrays of rowwise END random variables is also obtained. The result obtained in the paper generalizes and improves some corresponding ones for independent random variables and some dependent random variables in some extent. By using the complete convergence that we established, we further study the complete consistency for the weighted estimator in a nonparametric regression model based on END errors.


Filomat ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 1195-1206 ◽  
Author(s):  
Xuejun Wang ◽  
Zhiyong Chen ◽  
Ru Xiao ◽  
Xiujuan Xie

In this paper, the complete moment convergence and the integrability of the supremum for weighted sums of negatively orthant dependent (NOD, in short) random variables are presented. As applications, the complete convergence and the Marcinkiewicz-Zygmund type strong law of large numbers for NODrandom variables are obtained. The results established in the paper generalize some corresponding ones for independent random variables and negatively associated random variables.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Aiting Shen ◽  
Xinghui Wang ◽  
Huayan Zhu

We prove the strong law of large numbers for weighted sums∑i=1n‍aniXi, which generalizes and improves the corresponding one for independent and identically distributed random variables andφ-mixing random variables. In addition, we present some results on complete convergence for weighted sums ofρ*-mixing random variables under some suitable conditions, which generalize the corresponding ones for independent random variables.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xiaochen Ma ◽  
Qunying Wu

In this article, we research some conditions for strong law of large numbers (SLLNs) for weighted sums of extended negatively dependent (END) random variables under sublinear expectation space. Our consequences contain the Kolmogorov strong law of large numbers and the Marcinkiewicz strong law of large numbers for weighted sums of extended negatively dependent random variables. Furthermore, our results extend strong law of large numbers for some sequences of random variables from the traditional probability space to the sublinear expectation space context.


1999 ◽  
Vol 22 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Dug Hun Hong ◽  
Seok Yoon Hwang

Let {Xij}be a double sequence of pairwise independent random variables. If P{|Xmn|≥t}≤P{|X|≥t}for all nonnegative real numbers tandE|X|p(log+|X|)3<∞, for1<p<2, then we prove that∑i=1m∑j=1n(Xij−EXij)(mn)1/p→0    a.s.   as  m∨n→∞.                                     (0.1)Under the weak condition ofE|X|plog+|X|<∞, it converges to 0inL1. And the results can be generalized to anr-dimensional array of random variables under the conditionsE|X|p(log+|X|)r+1<∞,E|X|p(log+|X|)r−1<∞, respectively, thus, extending Choi and Sung's result [1] of the one-dimensional case.


2010 ◽  
Vol 47 (04) ◽  
pp. 908-922 ◽  
Author(s):  
Yiqing Chen ◽  
Anyue Chen ◽  
Kai W. Ng

A sequence of random variables is said to be extended negatively dependent (END) if the tails of its finite-dimensional distributions in the lower-left and upper-right corners are dominated by a multiple of the tails of the corresponding finite-dimensional distributions of a sequence of independent random variables with the same marginal distributions. The goal of this paper is to establish the strong law of large numbers for a sequence of END and identically distributed random variables. In doing so we derive some new inequalities of large deviation type for the sums of END and identically distributed random variables being suitably truncated. We also show applications of our main result to risk theory and renewal theory.


Sign in / Sign up

Export Citation Format

Share Document