Real Probability of Liquefaction, Liquefaction Potential Index Based In CPTU Data for Golem Area, In Albania

Liquefaction is a phenomenon of loss of strength of the soil layers caused by earthquake vibration. Liquefaction causes the soil to be in a liquid – like state, especially on sandy soil. Analysis of liquefaction potential was performed by using the semi-empirical method by calculating the Safety Factor (SF) based on Standard penetration Test (SPT) and Cone Penetration test (CPT) data. After the SF value was obtained, then the Liquefaction Potential Index (LPI) was calculated to determine the level of potential liquefaction in the study area to further produce a liquefaction potential map based on the liquefaction potential index. Based on the results of the calculation of the LPI, the level of liquefaction potential in the study area was very low when the earthquake magnitude is 5 Mw because the Liquefaction Potential Index (LPI) = 0. When the earthquake magnitude is 6 Mw, 7 Mw, 8 Mw, and 9 Mw, most of the investigation area has low potential level and there are some points that a high potential level.


2021 ◽  
pp. 875529302199484
Author(s):  
Zach Bullock ◽  
Shideh Dashti ◽  
Abbie B Liel ◽  
Keith A Porter

Geotechnical liquefaction indices, such as the liquefaction potential index, are commonly used as proxies for the risk of liquefaction-induced damage at site or regional scales. However, these indices were developed based on surficial manifestations of soil liquefaction in the free field, and, as such, they have been shown to correlate better with land damage than foundation damage. This study evaluates the ability of three geotechnical liquefaction indices to predict foundation settlement on liquefiable soils, as compared to both conventional ground motion intensity measures (IMs) and the term for site and ground motion effects in a probabilistic model specifically developed for foundation settlement. A new metric for the predictive ability of these measures, skill, is proposed to quantify the total uncertainty in settlement predictions using a given measure. The Ishihara-inspired liquefaction potential index is found to be the optimum index, and cumulative absolute velocity [Formula: see text] as predicted on outcropping rock is found to be the optimum IM. However, although both measures are regionally applicable, neither outperforms the site term from the probabilistic settlement model, which was developed using the same numerical database used in this study.


Sign in / Sign up

Export Citation Format

Share Document