Estimated earthquake probabilities in the north circum-Pacific area

1972 ◽  
Vol 62 (6) ◽  
pp. 1397-1410
Author(s):  
A. F. Shakal ◽  
D. E. Willis

abstract Gumbel's extreme value theory is applied to the estimation of probabilities of occurrence and return periods for large earthquakes in the north circum-Pacific area, using earthquake data from 1930 through 1971. The probability model of Epstein and Lomnitz is discussed with reference to Gumbel's extreme value theory. Estimated probabilities and expected extremes within individual tectonic blocks are calculated and compared. The area of the Aleutian Arc between 155°W and 167°W is found to have about an 80 per cent probability of an Ms ≧ 8 earthquake by 1980.

2018 ◽  
Vol 18 (10) ◽  
pp. 2641-2651 ◽  
Author(s):  
Guillaume Evin ◽  
Thomas Curt ◽  
Nicolas Eckert

Abstract. Very large wildfires have high human, economic, and ecological impacts so that robust evaluation of their return period is crucial. Preventing such events is a major objective of the new fire policy set up in France in 1994, which is oriented towards fast and massive fire suppression. Whereas this policy is probably efficient for reducing the mean burned area (BA), its effect on the largest fires is still unknown. In this study, we make use of statistical extreme value theory (EVT) to compute return periods of very large BAs in southern France, for two distinct periods (1973 to 1994 and 1995 to 2016) and for three pyroclimatic regions characterized by specific fire activities. Bayesian inference and related predictive simulations are used to fairly evaluate related uncertainties. Results demonstrate that the BA corresponding to a return period of 5 years has actually significantly decreased, but that this is not the case for large return periods (e.g., 50 years). For example, in the most fire-prone region, which includes Corsica and Provence, the median 5-year return level decreased from 5000 to 2400 ha, while the median 50-year return level decreased only from 17 800 to 12 500 ha. This finding is coherent with the recent occurrence of conflagrations of large and intense fires clearly far beyond the suppression capacity of firemen. These fires may belong to a new generation of fires promoted by long-term fuel accumulation, urbanization into the wildland, and ongoing climate change. These findings may help adapt the operational system of fire prevention and suppression to ongoing changes. Also, the proposed methodology may be useful for other case studies worldwide.


2018 ◽  
Author(s):  
Guillaume Evin ◽  
Thomas Curt ◽  
Nicolas Eckert

Abstract. Very large wildfires have high human, economic and ecological impacts so that robust evaluation of their return period is crucial. Preventing such events is a major objective of the new fire policy set up in France in 1994, which is oriented towards fast and massive fire suppression. Whereas this policy is probably efficient for reducing the mean burned area (BA), its effect on the largest fires is still unknown. In this study, we make use of statistical Extreme Value Theory (EVT) to compute return periods of very large BA in southern France, for two distinct periods (1973 to 1994, and 1995 to 2016) and for three pyroclimatic regions characterized by specific fire activities. Bayesian inference and related predictive simulations are used to fairly evaluate related uncertainties. Results demonstrate that the BA corresponding to a return period of 5 years has actually significantly decreased, but that this is not the case for large return periods (e.g. 50 years). For example, in the most fire-prone region, which includes Corsica and Provence, the median 5-year return level decreased from 5,000 ha. to 2,400 ha., while the median 50-year return level decreased only from 17,800 ha. to 12,500 ha. This finding is coherent with the recent occurrence of conflagrations of large and intense fires clearly far beyond the suppression capacity of firemen. These fires may belong to a new generation of fires promoted by long-term fuel accumulation, urbanization into the wildland, and ongoing climate change. These findings may help adapting the operational system of fire prevention and suppression to ongoing changes. Also, the proposed methodology may be useful for other case studies worldwide.


2019 ◽  
Vol 8 (4) ◽  
pp. 85
Author(s):  
Faithful C. Onwuegbuche ◽  
Alpha B. Kenyatta ◽  
Steeven B. Affognon ◽  
Exavery P. Enock ◽  
Mary O. Akinade

Climate change has brought about unprecedented new weather patterns, one of which is changes in extreme rainfall. In Kenya, heavy rains and severe flash floods have left people dead and displaced hundreds from their settlements. In order to build a resilient society and achieve sustainable development, it is paramount that adequate inference about extreme rainfall be made. To this end, this research modelled and predicted extreme rainfall events in Kenya using Extreme Value Theory for rainfall data from 1901-2016. Maximum Likelihood Estimation was used to estimate the model parameters and block maxima approach was used to fit the Generalized Extreme Value Distribution (GEVD) while the Peak Over Threshold method was used to fit the Generalized Pareto Distribution (GPD). The Gumbel distribution was found to be the optimal model from the GEVD while the Exponential distribution gave the optimal model over the threshold value. Furthermore, prediction for the return periods of 10, 20, 50 and 100 years were made using the return level estimates and their corresponding confidence intervals were presented. It was found that increase in return periods leads to a corresponding increase in return levels. However, the GPD gave higher return levels for 10 and 20 years compared to GEVD. While, for higher return periods 50 and 100 years, the GEVD gave higher return levels compared to the GPD. Model diagnostics using probability, density, quantile and return level plots indicated that the models provided were a good fit for the data.


Sign in / Sign up

Export Citation Format

Share Document