Natural Hazards and Earth System Science
Latest Publications


TOTAL DOCUMENTS

3519
(FIVE YEARS 590)

H-INDEX

92
(FIVE YEARS 12)

Published By Copernicus Gmbh

1684-9981

2022 ◽  
Vol 22 (1) ◽  
pp. 65-70
Author(s):  
Luis Moya ◽  
Fernando Garcia ◽  
Carlos Gonzales ◽  
Miguel Diaz ◽  
Carlos Zavala ◽  
...  

Abstract. Lima, Peru's capital, has about 9.6 million inhabitants and keeps attracting more residents searching for a better life. Many citizens, without access to housing subsidies, live in informal housing and shack settlements. A typical social phenomenon in Lima is the sudden illegal occupation of areas for urban settlements. When such areas are unsafe against natural hazards, it is important to relocate such a population to avoid significant future losses. In this communication, we present an application of Sentinel-1 synthetic aperture radar (SAR) images to map the extension of a recent occupation of an area with unfavorable soil conditions against earthquakes.


2022 ◽  
Vol 22 (1) ◽  
pp. 41-63
Author(s):  
Janneke van Ginkel ◽  
Elmer Ruigrok ◽  
Jan Stafleu ◽  
Rien Herber

Abstract. Earthquake site response is an essential part of seismic hazard assessment, especially in densely populated areas. The shallow geology of the Netherlands consists of a very heterogeneous soft sediment cover, which has a strong effect on the amplitude of ground shaking. Even though the Netherlands is a low- to moderate-seismicity area, the seismic risk cannot be neglected, in particular, because shallow induced earthquakes occur. The aim of this study is to establish a nationwide site-response zonation by combining 3D lithostratigraphic models and earthquake and ambient vibration recordings. As a first step, we constrain the parameters (velocity contrast and shear-wave velocity) that are indicative of ground motion amplification in the Groningen area. For this, we compare ambient vibration and earthquake recordings using the horizontal-to-vertical spectral ratio (HVSR) method, borehole empirical transfer functions (ETFs), and amplification factors (AFs). This enables us to define an empirical relationship between the amplification measured from earthquakes by using the ETF and AF and the amplification estimated from ambient vibrations by using the HVSR. With this, we show that the HVSR can be used as a first proxy for site response. Subsequently, HVSR curves throughout the Netherlands are estimated. The HVSR amplitude characteristics largely coincide with the in situ lithostratigraphic sequences and the presence of a strong velocity contrast in the near surface. Next, sediment profiles representing the Dutch shallow subsurface are categorised into five classes, where each class represents a level of expected amplification. The mean amplification for each class, and its variability, is quantified using 66 sites with measured earthquake amplification (ETF and AF) and 115 sites with HVSR curves. The site-response (amplification) zonation map for the Netherlands is designed by transforming geological 3D grid cell models into the five classes, and an AF is assigned to most of the classes. This site-response assessment, presented on a nationwide scale, is important for a first identification of regions with increased seismic hazard potential, for example at locations with mining or geothermal energy activities.


2022 ◽  
Vol 22 (1) ◽  
pp. 23-40
Author(s):  
Chung-Chieh Wang ◽  
Pi-Yu Chuang ◽  
Chih-Sheng Chang ◽  
Kazuhisa Tsuboki ◽  
Shin-Yi Huang ◽  
...  

Abstract. In this study, the performance of quantitative precipitation forecasts (QPFs) by the Cloud-Resolving Storm Simulator (CReSS) in Taiwan, at a horizontal grid spacing of 2.5 km and a domain size of 1500×1200 km2, in the range of 1–3 d during three Mei-yu seasons (May–June) of 2012–2014 is evaluated using categorical statistics, with an emphasis on heavy-rainfall events (≥100 mm per 24 h). The categorical statistics are chosen because the main hazards are landslides and floods in Taiwan, so predicting heavy rainfall at the correct location is important. The overall threat scores (TSs) of QPFs for all events on day 1 (0–24 h) are 0.18, 0.15, and 0.09 at thresholds of 100, 250, and 500 mm, respectively, and indicate considerable improvements at increased resolution compared to past results and 5 km models (TS < 0.1 at 100 mm and TS ≤ 0.02 at 250 mm). Moreover, the TSs are shown to be higher and the model more skillful in predicting larger events, in agreement with earlier findings for typhoons. After classification based on observed rainfall, the TSs of day − 1 QPFs for the largest 4 % of events by CReSS at 100, 250, and 500 mm (per 24 h) are 0.34, 0.24, and 0.16, respectively, and can reach 0.15 at 250 mm on day 2 (24–48 h) and 130 mm on day 3 (48–72 h). The larger events also exhibit higher probability of detection and lower false alarm ratio than smaller ones almost without exception across all thresholds. With the convection and terrain better resolved, the strength of the model is found to lie mainly in the topographic rainfall in Taiwan rather than migratory events that are more difficult to predict. Our results highlight the crucial importance of cloud-resolving capability and the size of fine mesh for heavy-rainfall QPFs in Taiwan.


2022 ◽  
Vol 22 (1) ◽  
pp. 1-22
Author(s):  
Christopher H. Lashley ◽  
Sebastiaan N. Jonkman ◽  
Jentsje van der Meer ◽  
Jeremy D. Bricker ◽  
Vincent Vuik

Abstract. Many coastlines around the world are protected by dikes with shallow foreshores (e.g. salt marshes and mudflats) that attenuate storm waves and are expected to reduce the likelihood and volume of waves overtopping the dikes behind them. However, most of the studies to date that assessed their effectiveness have excluded the influence of infragravity (IG) waves, which often dominate in shallow water. Here, we propose a modular and adaptable framework to estimate the probability of coastal dike failure by overtopping waves (Pf). The influence of IG waves on overtopping is included using an empirical approach, which is first validated against observations made during two recent storms (2015 and 2017). The framework is then applied to compare the Pf values of the dikes along the Dutch Wadden Sea coast with and without the influence of IG waves. Findings show that including IG waves results in 1.1 to 1.6 times higher Pf values, suggesting that safety is overestimated when they are neglected. This increase is attributed to the influence of the IG waves on the design wave period and, to a lesser extent, the wave height at the dike toe. The spatial variation in this effect, observed for the case considered, highlights its dependence on local conditions – with IG waves showing greater influence at locations with larger offshore waves, such as those behind tidal inlets, and shallower water depths. Finally, the change in Pf due to the IG waves varied significantly depending on the empirical wave overtopping model selected, emphasizing the importance of tools developed specifically for shallow foreshore environments.


2021 ◽  
Vol 21 (12) ◽  
pp. 3873-3877
Author(s):  
Jonathan Rizzi ◽  
Ana M. Tarquis ◽  
Anne Gobin ◽  
Mikhail Semenov ◽  
Wenwu Zhao ◽  
...  


2021 ◽  
Vol 21 (12) ◽  
pp. 3863-3871
Author(s):  
Jim S. Whiteley ◽  
Arnaud Watlet ◽  
J. Michael Kendall ◽  
Jonathan E. Chambers

Abstract. We summarise the contribution of geophysical imaging to local landslide early warning systems (LoLEWS), highlighting how the design and monitoring components of LoLEWS benefit from the enhanced spatial and temporal resolutions of time-lapse geophysical imaging. In addition, we discuss how with appropriate laboratory-based petrophysical transforms, geophysical data can be crucial for future slope failure forecasting and modelling, linking other methods of remote sensing and intrusive monitoring across different scales. We conclude that in light of ever-increasing spatiotemporal resolutions of data acquisition, geophysical monitoring should be a more widely considered technology in the toolbox of methods available to stakeholders operating LoLEWS.


2021 ◽  
Vol 21 (12) ◽  
pp. 3879-3897
Author(s):  
Veronika Hutter ◽  
Frank Techel ◽  
Ross S. Purves

Abstract. Effective and efficient communication of expected avalanche conditions and danger to the public is of great importance, especially where the primary audience of forecasts are recreational, non-expert users. In Europe, avalanche danger is communicated using a pyramid, starting with ordinal levels of avalanche danger and progressing through avalanche-prone locations and avalanche problems to a danger description. In many forecast products, information relating to the trigger required to release an avalanche, the frequency or number of potential triggering spots, and the expected avalanche size is described exclusively in a textual danger description. These danger descriptions are, however, the least standardized part of avalanche forecasts. Taking the perspective of the avalanche forecaster and focusing particularly on terms describing these three characterizing elements of avalanche danger, we investigate first which meaning forecasters assign to the text characterizing these elements and second how these descriptions relate to the forecast danger level. We analyzed almost 6000 danger descriptions in avalanche forecasts published in Switzerland and written using a structured catalogue of phrases with a limited number of words. Words and phrases representing information describing these three elements were labeled and assigned to ordinal classes by Swiss avalanche forecasters. These classes were then related to avalanche danger. Forecasters were relatively consistent in assigning labels to words and phrases with Cohen's kappa values ranging from 0.64 to 0.87. Avalanche danger levels were also described consistently using words and phrases, with for example avalanche size classes increasing monotonically with avalanche danger. However, especially for danger level 2 (moderate), information about key elements of avalanche danger, for instance the frequency or number of potential triggering spots, was often missing in danger descriptions. In general, the analysis of the danger descriptions showed that extreme conditions are described in more detail than intermediate values, highlighting the difficulty of communicating conditions that are neither rare nor frequent or neither small nor large. Our results provide data-driven insights that could be used to refine the ways in which avalanche danger could be communicated. Furthermore, through the perspective of the semiotic triangle, relating a referent (the avalanche situation) through thought (the processing process) to symbols (the textual danger description), we provide an alternative starting point for future studies of avalanche forecast consistency and communication.


2021 ◽  
Vol 21 (12) ◽  
pp. 3843-3862
Author(s):  
Stephen Cunningham ◽  
Steven Schuldt ◽  
Christopher Chini ◽  
Justin Delorit

Abstract. Extreme events, such as natural or human-caused disasters, cause mental health stress in affected communities. While the severity of these outcomes varies based on socioeconomic standing, age group, and degree of exposure, disaster planners can mitigate potential stress-induced mental health outcomes by assessing the capacity and scalability of early, intermediate, and long-term treatment interventions by social workers and psychologists. However, local and state authorities are typically underfunded, understaffed, and have ongoing health and social service obligations that constrain mitigation and response activities. In this research, a resource assignment framework is developed as a coupled-state transition and linear optimization model that assists planners in optimally allocating constrained resources and satisfying mental health recovery priorities post-disaster. The resource assignment framework integrates the impact of a simulated disaster on mental health, mental health provider capacities, and the Center for Disease Control and Prevention (CDC) Social Vulnerability Index (SVI) to identify vulnerable populations needing additional assistance post-disaster. In this study, we optimally distribute mental health clinicians to treat the affected population based upon rule sets that simulate decision-maker priorities, such as economic and social vulnerability criteria. Finally, the resource assignment framework maps the mental health recovery of the disaster-affected populations over time, providing agencies a means to prepare for and respond to future disasters given existing resource constraints. These capabilities hold the potential to support decision-makers in minimizing long-term mental health impacts of disasters on communities through improved preparation and response activities.


2021 ◽  
Vol 21 (12) ◽  
pp. 3827-3842
Author(s):  
Changbin Lim ◽  
Tae Kon Kim ◽  
Sahong Lee ◽  
Yoon Jeong Yeon ◽  
Jung Lyul Lee

Abstract. In many parts, coastal erosion is severe due to human-induced coastal zone development and storm impacts, in addition to climate change. In this study, the beach erosion risk was defined, followed by a quantitative assessment of potential beach erosion risk based on three components associated with the watershed, coastal zone development, and episodic storms. On an embayed beach, the background erosion due to development in the watershed affects sediment supply from rivers to the beach, while alongshore redistribution of sediment transport caused by construction of a harbor induces shoreline reshaping, for which the parabolic-type equilibrium bay shape model is adopted. To evaluate beach erosion during storms, the return period (frequency) of a storm occurrence was evaluated from long-term beach survey data conducted four times per year. Beach erosion risk was defined, and assessment was carried out for each component, from which the results were combined to construct a combined potential erosion risk curve to be used in the environmental impact assessment. Finally, the proposed method was applied to Bongpo–Cheonjin Beach in Gangwon-do, South Korea, with the support of a series of aerial photographs taken from 1972 to 2017 and beach survey data obtained from the period commencing in 2010. The satisfactory outcomes derived from this study are expected to benefit eroding beaches elsewhere.


2021 ◽  
Vol 21 (12) ◽  
pp. 3809-3825
Author(s):  
Gaia Mattei ◽  
Diana Di Luccio ◽  
Guido Benassai ◽  
Giorgio Anfuso ◽  
Giorgio Budillon ◽  
...  

Abstract. Destructive marine storms bring large waves and unusually high surges of water to coastal areas, resulting in significant damages and economic loss. This study analyses the characteristics of a destructive marine storm on the strongly inhabited coastal area of Gulf of Naples, along the Italian coasts of the Tyrrhenian Sea. This is highly vulnerable to marine storms due to the accelerated relative sea level rise trend and the increased anthropogenic impact on the coastal area. The marine storm, which occurred on 28 December 2020, was analyzed through an unstructured wind–wave coupled model that takes into account the main marine weather components of the coastal setup. The model, validated with in situ data, allowed the establishment of threshold values for the most significant marine and atmospheric parameters (i.e., wind intensity and duration) beyond which an event can produce destructive effects. Finally, a first assessment of the return period of this event was evaluated using local press reports on damage to urban furniture and port infrastructures.


Sign in / Sign up

Export Citation Format

Share Document