Structure of the Reelfoot Rift As Interpreted From 2-D Magnetotelluric Models

1992 ◽  
Vol 63 (3) ◽  
pp. 223-232 ◽  
Author(s):  
William D. Stanley ◽  
Brian D. Rodriguez

Abstract The results of magnetotelluric (MT) surveys reveal structures associated with the Reelfoot rift, including an axial high-resistivity structure that may be related to intrusions in the central part of the rift or to a previously unrecognized horst. The axis of this resistivity high generally follows the central part of the Reelfoot rift, but its orientation is offset several degrees from the enigmatic Blytheville arch. The MT structural high follows the main part of a northeast-trending seismicity belt, but in the New Madrid, Missouri area electrical structures are more complicated. In this northern part of the study area, the strike of resistivity structures determined from the MT data indicate a nearly north-south direction, rather than the N45°E direction indicated for most of the data. If the axial high-resistivity structure represents a horst, then it may form an interior divide between thick shale basins. Faults bounding the proposed horst may be a controlling factor for the northeast trending seismic zone.

2020 ◽  
Author(s):  
Renee M. Reichenbacher ◽  
◽  
Valarie Harrison ◽  
Taylor Andrew Weathers ◽  
Roy B. Van Arsdale ◽  
...  

2020 ◽  
Author(s):  
Samia Noor ◽  
◽  
Randel Tom Cox ◽  
Robert Smalley ◽  
Md Rizwanul Hasan

Geomorphology ◽  
2002 ◽  
Vol 43 (3-4) ◽  
pp. 313-349 ◽  
Author(s):  
M.J Guccione ◽  
K Mueller ◽  
J Champion ◽  
S Shepherd ◽  
S.D Carlson ◽  
...  

1977 ◽  
Vol 67 (1) ◽  
pp. 209-218
Author(s):  
R. B. Herrmann ◽  
G. W. Fischer ◽  
J. E. Zollweg

abstract The June 13, 1975 earthquake in the New Madrid seismic zone produced the first recorded strong-motion accelerograms for an event in the region, as well as the largest recorded accelerations to date for any event in eastern North America. The peak strong-motion values obtained from an analysis of the accelerograms are the following: amax = 43 cm/sec2, vmax = 1 cm/sec and dmax = 0.05 cm for the longitudinal S88°W component; amax = 31 cm/sec2, vmax = 0.6 cm/sec and dmax = 0.01 cm for the DOWN component; amax = 64 cm/sec2, vmax = 1.6 cm/sec2, and dmax = 0.09 cm for the tangential S02°E component. Source parameter estimation using long-period surface waves, Lg spectra, P-wave first motions and the integrated accelerograms leads to a consistent solution. The seismic moment is estimated to be 4E21 dyne-cm and the corner period 0.6 sec. The corner period-seismic moment pair for this event agrees with the regional scaling of these parameters observed by Street et al. (1975).


1981 ◽  
Vol 71 (6) ◽  
pp. 1933-1942
Author(s):  
F. Steve Schilt ◽  
Robert E. Reilinger

Abstract Relative vertical displacements of bench marks in extreme western Kentucky have been determined by comparison of successive leveling surveys in 1947 and 1968. The resulting pattern of apparent surface deformation shows steep offset which can be closely modeled by a normal fault buried in an elastic half-space. The offset is located near the northern boundary of the Mississippi Embayment and the New Madrid seismic zone, an area where faults have previously been inferred on the basis of both geological and geophysical evidence. If the apparent movement is due to slip along a fault, several lines of evidence (regional structure, earthquake data, and lineations) suggest that the postulated fault trends NNE. Thirteen earthquakes were recorded in this area between the times of leveling; focal mechanisms exist for three of these. The nearest of these three focal mechanisms to the leveling offset implies normal faulting. The magnitude of the earthquake, however, appears to be too small to account for the amount of slip required by the fault model. Thus the apparent deformation may have accumulated with several undetected small earthquakes, or gradually as aseismic creep.


Sign in / Sign up

Export Citation Format

Share Document