seismic moment
Recently Published Documents


TOTAL DOCUMENTS

446
(FIVE YEARS 113)

H-INDEX

40
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Takuya Nishimura

Abstract In this study, we developed a regional likelihood model for crustal earthquakes using geodetic strain rate data from southwest Japan. First, smoothed strain rate distributions were estimated from continuous GNSS measurements. Second, we removed the elastic strain rate attributed to interplate coupling on the subducting plate boundary, including the observed strain rate, under the assumption that it is not attributed to permanent loading on crustal faults. We then converted the geodetic strain rates to seismic moment rates and calculated the 30-year probability for M ≥ 6 earthquakes in 0.2 × 0.2° cells, using a truncated Gutenberg–Richter law and time-independent Poisson process. Likelihood models developed using different conversion equations, seismogenic thicknesses, and rigidities were validated using the epicenters and moment distribution of historical earthquakes. The average seismic moment rate of crustal earthquakes recorded during 1583–2020 was only 13–20 % of the seismic moment rate converted from the geodetic data, which suggests that the observed geodetic strain rate includes considerable inelastic strain. Therefore, we introduced an empirical coefficient to calibrate the moment rate converted from geodetic data with the moment rate of the earthquakes. Several statistical scores and the Molchan diagram showed that all models could predict real earthquakes better than the reference model, in which earthquakes occur uniformly in space. Models using principal horizontal strain rates exhibited better predictive skill than those using the maximum horizontal shear strain rate. There was no significant difference in the predictive skill between uniform and variable distributions for seismogenic thickness and rigidity. The preferred models suggested high 30-year-probability in the Niigata–Kobe Tectonic Zone and central Kyushu, exceeding 1% in more than half of the analyzed region. Model predictive skill was also verified by a prospective test using earthquakes recorded during 2010–2020. This study suggests that the proposed forecast model based on geodetic data can improve the regional likelihood model for crustal earthquakes in Japan in combination with other forecast models based on active faults and seismicity.


2021 ◽  
Vol 4 (4) ◽  
pp. 89
Author(s):  
Ercan Işık ◽  
Ehsan Harirchian ◽  
Aydın Büyüksaraç ◽  
Yunus Levent Ekinci

Seismic hazard analysis of the earthquake-prone Eastern Anatolian Region (Turkey) has become more important due to its growing strategic importance as a global energy corridor. Most of the cities in that region have experienced the loss of life and property due to significant earthquakes. Thus, in this study, we attempted to estimate the seismic hazard in that region. Seismic moment variations were obtained using different types of earthquake magnitudes such as Mw, Ms, and Mb. The earthquake parameters were also determined for all provincial centers using the earthquake ground motion levels with some probabilities of exceedance. The spectral acceleration coefficients were compared based on the current and previous seismic design codes of the country. Additionally, structural analyses were performed using different earthquake ground motion levels for the Bingöl province, which has the highest peak ground acceleration values for a sample reinforced concrete building. The highest seismic moment variations were found between the Van and Hakkari provinces. The findings also showed that the peak ground acceleration values varied between 0.2–0.7 g for earthquakes, with a repetition period of 475 years. A comparison of the probabilistic seismic hazard curves of the Bingöl province with the well-known attenuation relationships showed that the current seismic design code indicates a higher earthquake risk than most of the others.


2021 ◽  
Author(s):  
◽  
Elizabeth de Joux Robertson

<p>The aim of this project is to enable accurate earthquake magnitudes (moment magnitude, MW) to be calculated routinely and in near real-time for New Zealand earthquakes. This would be done by inversion of waveform data to obtain seismic moment tensors. Seismic moment tensors also provide information on fault-type. I use a well-established seismic moment tensor inversion method, the Time-Domain [seismic] Moment Tensor Inversion algorithm (TDMT_INVC) and apply it to GeoNet broadband waveform data to generate moment tensor solutions for New Zealand earthquakes. Some modifications to this software were made. A velocity model can now be automatically used to calculate Green's functions without having a pseudolayer boundary at the source depth. Green's functions can be calculated for multiple depths in a single step, and data are detrended and a suitable data window is selected. The seismic moment tensor solution that has either the maximum variance reduction or the maximum double-couple component is automatically selected for each depth. Seismic moment tensors were calculated for 24 New Zealand earthquakes from 2000 to 2005. The Global CMT project has calculated CMT solutions for 22 of these, and the Global CMT project solutions are compared to the solutions obtained in this project to test the accuracy of the solutions obtained using the TDMT_INVC code. The moment magnitude values are close to the Global CMT values for all earthquakes. The focal mechanisms could only be determined for a few of the earthquakes studied. The value of the moment magnitude appears to be less sensitive to the velocity model and earthquake location (epicentre and depth) than the focal mechanism. Distinguishing legitimate seismic signal from background seismic noise is likely to be the biggest problem in routine inversions.</p>


2021 ◽  
Author(s):  
◽  
Elizabeth de Joux Robertson

<p>The aim of this project is to enable accurate earthquake magnitudes (moment magnitude, MW) to be calculated routinely and in near real-time for New Zealand earthquakes. This would be done by inversion of waveform data to obtain seismic moment tensors. Seismic moment tensors also provide information on fault-type. I use a well-established seismic moment tensor inversion method, the Time-Domain [seismic] Moment Tensor Inversion algorithm (TDMT_INVC) and apply it to GeoNet broadband waveform data to generate moment tensor solutions for New Zealand earthquakes. Some modifications to this software were made. A velocity model can now be automatically used to calculate Green's functions without having a pseudolayer boundary at the source depth. Green's functions can be calculated for multiple depths in a single step, and data are detrended and a suitable data window is selected. The seismic moment tensor solution that has either the maximum variance reduction or the maximum double-couple component is automatically selected for each depth. Seismic moment tensors were calculated for 24 New Zealand earthquakes from 2000 to 2005. The Global CMT project has calculated CMT solutions for 22 of these, and the Global CMT project solutions are compared to the solutions obtained in this project to test the accuracy of the solutions obtained using the TDMT_INVC code. The moment magnitude values are close to the Global CMT values for all earthquakes. The focal mechanisms could only be determined for a few of the earthquakes studied. The value of the moment magnitude appears to be less sensitive to the velocity model and earthquake location (epicentre and depth) than the focal mechanism. Distinguishing legitimate seismic signal from background seismic noise is likely to be the biggest problem in routine inversions.</p>


2021 ◽  
Vol 43 (4) ◽  
pp. 105-118
Author(s):  
R.M. Pak ◽  
O.D. Hrytsai

Modeling of earthquake source parameters, such as the orientation of the fault plane and the direction of the fault slip, is important for understanding the physics of earthquake source processes, determining the stress-strain state of the geological medium and seismic hazard estimation. For modeling source parameters of the earthquake on December 12, 2018 at 08:49:56,16 (UTC) in Japan (36,4478° N, 140,5788° E, Northern Ibaraki Pref region) at a depth of 62 km with a magnitude of Mw = 4.3, the waveforms inversion was used to determine seismic moment tensor and representation it through a focal mechanism. The earthquake source is considered as a point source of seismic waves which propagate in a medium represented by a set of horizontally homogeneous elastic layers. An algorithm for determining seismic tensor components based on the forward problem solved by the matrix method, and using the generalized inverse solution, selecting only direct waves is applied. The input data for determining seismic moment components are data of only direct P waves selected from the observed records at six seismic stations of the Japanese local network NIED F-net: TSK, YMZ, ASI, ONS, SBT, KSK. The seismic moment tensor components were determined through waveform inversion using the matrix method. The obtained results, presented through a focal mechanism, are compared to the results obtained by the National Research Institute of Earth Sciences and Resistance to Natural Disasters (NIED CMT solutions). As a result of focal mechanisms comparison, it is concluded that the proposed algorithm for determining seismic moment tensor components can be used if it is impossible to use another method, or requires some refinement for another method. This approach is especially relevant for regions with low seismicity and insufficient number of stations. In addition, this method reduces the effects of an inaccurate medium model, because direct waves are much less distorted than reflected and converted, and that increases the accuracy and reliability of the method.


Author(s):  
Andreas Steinberg ◽  
Hannes Vasyura‐Bathke ◽  
Peter Gaebler ◽  
Matthias Ohrnberger ◽  
Lars Ceranna

2021 ◽  
Vol 9 ◽  
Author(s):  
M. Chlieh ◽  
C. Beauval ◽  
H. Yepes ◽  
J. Marinière ◽  
M. Saillard ◽  
...  

The Colombia–Ecuador subduction zone is an exceptional natural laboratory to study the seismic cycle associated with large and great subduction earthquakes. Since the great 1906 Mw = 8.6 Colombia–Ecuador earthquake, four large Mw &gt; 7.5 megathrust earthquakes occurred within the 1906 rupture area, releasing altogether a cumulative seismic moment of ∼35% of the 1906 seismic moment. We take advantage of newly released seismic catalogs and global positioning system (GPS) data at the scale of the Colombia–Ecuador subduction zone to balance the moment deficit that is building up on the megathrust interface during the interseismic period with the seismic and aseismic moments released by transient slip episodes. Assuming a steady-state interseismic loading, we found that the seismic moment released by the 2016 Mw = 7.8 Pedernales earthquake is about half of the moment deficit buildup since 1942, suggesting that the Pedernales segment was mature to host that seismic event and its postseismic afterslip. In the aftermath of the 2016 event, the asperities that broke in 1958 and 1979 both appears to be mature to host a large Mw &gt; 7.5 earthquakes if they break in two individual seismic events, or an Mw∼7.8–8.0 earthquake if they break simultaneously. The analysis of our interseismic-coupling map suggests that the great 1906 Colombia–Ecuador earthquake could have ruptured a segment of 400 km-long bounded by two 80 km wide creeping segments that coincide with the entrance into the subduction of the Carnegie ridge in Ecuador and the Yaquina Graben in Colombia. These creeping segments share similar frictional properties and may both behave as strong seismic barriers able to stop ruptures associated with great events like in 1906. Smaller creeping segments are imaged within the 1906 rupture area and are located at the extremities of the large 1942, 1958, 1979, and 2016 seismic ruptures. Finally, assuming that the frequency–magnitude distribution of megathrust seismicity follows the Gutenberg–Richter law and considering that 50% of the transient slip on the megathrust is aseismic, we found that the maximum magnitude subduction earthquake that can affect this subduction zone has a moment magnitude equivalent to Mw ∼8.8 with a recurrence time of 1,400 years. No similar magnitude event has yet been observed in that region.


Sign in / Sign up

Export Citation Format

Share Document