fault zone
Recently Published Documents


TOTAL DOCUMENTS

3995
(FIVE YEARS 938)

H-INDEX

86
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Haekal Azief Haridhi ◽  
Bor-Shouh Huang ◽  
Kuo-Liang Wen ◽  
Arif Mirza ◽  
Syamsul Rizal ◽  
...  

Abstract. Near the northern border of Sumatra, the right-lateral strike-slip Sumatran Fault Zone splits into two branches and extends into the offshore, as revealed by seismic sounding surveys. However, due to its strike-slip faulting characteristics, the Sumatran Fault Zone’s activity is rarely believed to cause tsunami hazards in this region. According to two reprocessed reflection seismic profiles, the extended Sumatran Fault Zone is strongly associated with chaotic facies, indicating that large submarine landslides have been triggered. Coastal steep slopes and new subsurface characteristics of submarine landslide deposits were mapped using recently acquired high-resolution shallow bathymetry data. Slope stability analysis revealed some targets with steep morphology to be close to failure. In an extreme case, an earthquake of Mw 7 or more occurred, and the strong ground shaking triggered a submarine landslide off the northern shore of Sumatra. Based on a simulation of tsunami wave propagation in shallow water, the results of this study indicate a potential tsunami hazard from a submarine landslide triggered by the strike-slip fault system. The landslide tsunami hazard assessment and early warning systems in this study area can be improved on the basis of this proposed scenario.


2022 ◽  
Author(s):  
Yun Zhou ◽  
Li-Sheng Xu ◽  
Zhengyang Pan ◽  
Ming Hao ◽  
Chun-Lai Li

2022 ◽  
Author(s):  
Christopher B. DuRoss ◽  
et al.

Text S1: Bayesian (OxCal) models for northern Lost River fault zone trench sites. Text S2: Bulk sediment analysis and charcoal identification; Text S3: Luminescence geochronology. Table S1: Description of stratigraphic units at the Sheep Creek trench. Table S2: Description of stratigraphic units at the Arentson Gulch trench. Figure S1: Photomosaics and large-format trench logs for the Sheep Creek trench. Figure S2: Photomosaics and large-format trench logs for the Arentson Gulch trench. Figure S3: Sheep Creek and Arentson Gulch vertical displacement measurements. Figure S4: Fault bend angles along the northern Lost River fault zone. Figure S5: Photographs of the Sheep Creek and Arentson Gulch trench sites. Figure S6: Probability density functions for Lost River fault zone ruptures.


Author(s):  
Marjolein Blasweiler ◽  
Matthew W. Herman ◽  
Fenna Houtsma ◽  
Rob Govers

Abstract An historically unprecedented seismic moment was released by crustal events of the 2019–2020 earthquake sequence near southwest Puerto Rico. The sequence involved at least two, and perhaps three interacting fault systems. The largest Mw 6.4 event was likely triggered by left lateral strike-slip events along the eastern extension of the North Boquerón Bay-Punta Montalva fault zone. The mainshock occurred in a normal fault zone that extends into a region where previous studies documented extensional deformation, beyond the Ponce fault and the Bajo Tasmanian fault. Coulomb stress changes by the mainshock may have triggered further normal-faulting aftershocks, left lateral strike-slip events in the region where these two fault zones interacted, and possibly right lateral strike-slip aftershocks along a third structure extending southward, the Guayanilla fault zone. Extension directions of the seismic sequence are consistently north-northwest–south-southeast-oriented, in agreement with the Global Navigation Satellite Systems-inferred motion direction of eastern Hispaniola relative to western Puerto Rico, and with crustal stress estimates for the overriding plate boundary zone.


2022 ◽  
Author(s):  
Christopher B. DuRoss ◽  
et al.

Text S1: Bayesian (OxCal) models for northern Lost River fault zone trench sites. Text S2: Bulk sediment analysis and charcoal identification; Text S3: Luminescence geochronology. Table S1: Description of stratigraphic units at the Sheep Creek trench. Table S2: Description of stratigraphic units at the Arentson Gulch trench. Figure S1: Photomosaics and large-format trench logs for the Sheep Creek trench. Figure S2: Photomosaics and large-format trench logs for the Arentson Gulch trench. Figure S3: Sheep Creek and Arentson Gulch vertical displacement measurements. Figure S4: Fault bend angles along the northern Lost River fault zone. Figure S5: Photographs of the Sheep Creek and Arentson Gulch trench sites. Figure S6: Probability density functions for Lost River fault zone ruptures.


Author(s):  
Mark R. Miller ◽  
Evgeniy Y. Titov ◽  
Sergey S. Kharitonov ◽  
Yong Fang

The study examines the question of the tunnel behavior under seismic or geophysical load in the zone of changes in the hardness of the surrounding soil mass. In the course of the study, the internal forces and displacements arising in the structure of a tunnel in the zone of intersection of the boundaries of soil layers with different properties, in the case when these layers move relative to each other, were determined by analytical and numerical solutions. The data obtained by the analytical method was compared to numerical models using practical examples.


Sign in / Sign up

Export Citation Format

Share Document