Approximation of a Function Belonging to the Class Lip (ψ (t), p) by Using [s,an] Means

Author(s):  
Sanjay Mukherjee
Author(s):  
T. O. Petrova ◽  
I. P. Chulakov

We discuss whether on not it is possible to have interpolatory estimates in the approximation of a function $f є W^r [0,1]$ by polynomials. The problem of positive approximation is to estimate the pointwise degree of approximation of a function $f є C^r [0,1] \cap \Delta^0$ where $\Delta^0$ is the set of positive functions on [0,1]. Estimates of the form (1) for positive approximation are known ([1],[2]). The problem of monotone approximation is that of estimating the degree of approximation of a monotone nondecreasing function by monotone nondecreasing polynomials. Estimates of the form (1) for monotone approximation were proved in [3],[4],[8]. In [3],[4] is consider $r є , r > 2$. In [8] is consider $r є , r > 2$. It was proved that for monotone approximation estimates of the form (1) are fails for $r є , r > 2$. The problem of convex approximation is that of estimating the degree of approximation of a convex function by convex polynomials. The problem of convex approximation is that of estimating the degree of approximation of a convex function by convex polynomials. The problem of convex approximation is consider in ([5],[6]). In [5] is consider $r є , r > 2$. In [6] is consider $r є , r > 2$. It was proved that for convex approximation estimates of the form (1) are fails for $r є , r > 2$. In this paper the question of approximation of function $f є W^r \cap \Delta^1, r є (3,4)$ by algebraic polynomial $p_n є \Pi_n \cap \Delta^1$ is consider. The main result of the work generalize the result of work [8] for $r є (3,4)$.


2020 ◽  
Vol 37 (1-2) ◽  
pp. 80-85
Author(s):  
Smita Sonker ◽  
Alka Munjal ◽  
Lakshmi Narayan Mishra

Available with fulltext. 


2014 ◽  
Vol 14 (2) ◽  
pp. 117-122 ◽  
Author(s):  
JP Kushwaha ◽  
BP Dhakal

In this paper, an estimate for the degree of approximation of a function belonging to Lip(α, r) class by product summability method Np.q.C1 of its Fourier series has been established. DOI: http://dx.doi.org/10.3126/njst.v14i2.10424 Nepal Journal of Science and Technology Vol. 14, No. 2 (2013) 117-122


2019 ◽  
Vol 71 (2) ◽  
pp. 296-307
Author(s):  
O. V. Motorna ◽  
V. P. Motornyi

2019 ◽  
Vol 34 (3) ◽  
pp. 143-150
Author(s):  
Sergey V. Rogasinsky

Abstract The paper is focused on justification of a statistical modelling algorithm for solution of the nonlinear kinetic Boltzmann equation on the base of a projection method. Hermite functions are used as an orthonormal basis. The error of approximation of a function by a partial sum of Hermite functions series is estimated in the L2 norm. The estimates are compared for two variants of the projection method in the case of solutions to the homogeneous gas relaxation problem with a known solution.


Sign in / Sign up

Export Citation Format

Share Document