newton iterative method
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Danjuan Liu ◽  
Wei He

Abstract The paper derives the current-voltage relationship in the semiconductor circuit breaker based on the equation of fluid mechanics which has application for safe and water access. Then, the paper proposes a Newton iterative method based on the finite element analysis method to solve the nonlinear algebraic equation relationship in the semiconductor circuit breaker. At the same time, the paper constructed a coupled numerical model based on the hydrodynamic equations and applied it to the pulse current prediction. Experiments have proved that the algorithm can realize large-scale open-circuit switching current forecast, and the algorithm has high efficiency and accuracy.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jian Liu ◽  
Wenguang Yu

AbstractIn this paper, the existence of two solutions for superlinear fourth-order impulsive elastic beam equations is obtained. We get two theorems via variational methods and corresponding two-critical-point theorems. Combining with the Newton-iterative method, an example is presented to illustrate the value of the obtained theorems.


2021 ◽  
Vol 336 ◽  
pp. 05030
Author(s):  
Liping Ge ◽  
Jinhe Zhou

To reduce the delay of content acquisition, this paper proposes a game-based cache allocation strategy in the Information-Centric Network (ICN) slice. The cache resource allocation of different mobile virtual network operators (MVNOs) is modeled as a non-cooperative game model. The Newton iterative method is used to solve this problem, and the cache space allocated by the base station for each MVNO is obtained. Finally, the Nash equilibrium solution is obtained. Simulation results show that the proposed algorithm can reduce the delay.


2019 ◽  
Vol 39 (4) ◽  
pp. 548-555 ◽  
Author(s):  
Cuixia Zhang ◽  
Conghu Liu ◽  
Jianqing Chen ◽  
Qiang Li ◽  
Kang He ◽  
...  

Purpose The uncertainty of remanufacturing parts is a key factor affecting the quality of remanufactured products. Therefore, the purpose of this paper is to measure the uncertainty of remanufactured parts and study the coupling mechanism of reassembly quality. Design/methodology/approach First, uncertainty of remanufactured parts is analyzed, and the uncertainty measure model for remanufacturing parts based on entropy is constructed. Second, the nonlinear mapping model between the uncertainty and reassembly quality were studied using Gauss-Newton iterative method to reveal the coupling mechanism between uncertainty of remanufacturing parts and reassembly quality. Finally, the model is verified in the reassembly process of remanufacturing cylinder head. Findings The method can guide reassembly operations to improve the reassembly quality with uncertainty of remanufactured parts. Originality/value This study provides practical implications by developing a multivariate nonlinear mapping model for reassembly quality based on entropy to determine the uncertainty factors that affect the reassembly quality significantly and then correct the reassembly operation to better optimize the allocation of remanufacturing production resources. The study also theoretically contributes to reveal the coupling mechanism of reassembly quality with the uncertainty of remanufactured parts.


2019 ◽  
Vol 38 (3) ◽  
pp. 111-123
Author(s):  
Morteza Bisheh-Niasar ◽  
Abbas Saadatmandi

The aim of this paper is to present a new nonstandard Newton iterative method for solving nonlinear equations. The convergence of the proposed method is proved and it is shown that the new method has cubic convergence. Furthermore, two new multi-point methods with sixth-order convergence, based on the introduced method, are presented. Also, we describe the basins of attraction for these methods. Finally, some numerical examples are given to show the performance of our methods by comparing with some other methods available in the literature


Author(s):  
Weihua Cao ◽  
◽  
Xuemin Hu ◽  
Min Wu ◽  
Wei Yin ◽  
...  

A Quasi-Newton iterative method is developed for the calculation of the best achievable PID control performance and the corresponding optimal PID setting based on the control parameters and input-output data. At the basis of the proposed method, a self-tuning PID control system is proposed for the time-variant dynamic process. When controllers performance deteriorates below the general performance, controller parameters are directly adjusted with the Quasi-Newton iterative method. When below the poor performance, it can be indirectly adjusted with the identification of the closed-loop impulse response matrix. A data-driven solution is developed for calculation of the closed-loop impulse response matrix. Based on the acquired state information, system is assessed and adjusted cyclically so that a self-tuning PID control system is finally realized. Simulation results show the practicality and utility of this method.


Sign in / Sign up

Export Citation Format

Share Document