scholarly journals Some novel Newton-type methods for solving nonlinear equations

2019 ◽  
Vol 38 (3) ◽  
pp. 111-123
Author(s):  
Morteza Bisheh-Niasar ◽  
Abbas Saadatmandi

The aim of this paper is to present a new nonstandard Newton iterative method for solving nonlinear equations. The convergence of the proposed method is proved and it is shown that the new method has cubic convergence. Furthermore, two new multi-point methods with sixth-order convergence, based on the introduced method, are presented. Also, we describe the basins of attraction for these methods. Finally, some numerical examples are given to show the performance of our methods by comparing with some other methods available in the literature

2012 ◽  
Vol 220-223 ◽  
pp. 2658-2661
Author(s):  
Zhong Yong Hu ◽  
Liang Fang ◽  
Lian Zhong Li

We present a new modified Newton's method with third-order convergence and compare it with the Jarratt method, which is of fourth-order. Based on this new method, we obtain a family of Newton-type methods, which converge cubically. Numerical examples show that the presented method can compete with Newton's method and other known third-order modifications of Newton's method.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
F. Khaksar Haghani ◽  
F. Soleymani

A stable numerical method is proposed for matrix inversion. The new method is accompanied by theoretical proof to illustrate twelfth-order convergence. A discussion of how to achieve the convergence using an appropriate initial value is presented. The application of the new scheme for finding Moore-Penrose inverse will also be pointed out analytically. The efficiency of the contributed iterative method is clarified on solving some numerical examples.


2017 ◽  
Vol 12 (1) ◽  
pp. 87-95
Author(s):  
Jivandhar Jnawali

The aim of this paper is to propose a fourth-order Newton type iterative method for solving nonlinear equations in a single variable. We obtained this method by combining the iterations of contra harmonic Newton’s method with secant method. The proposed method is free from second order derivative. Some numerical examples are given to illustrate the performance and to show this method’s advantage over other compared methods.Journal of the Institute of Engineering, 2016, 12 (1): 87-95


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative method proposed by Basto et al. (2006), we present a new derivative-free iterative method for solving nonlinear equations. The aim of this paper is to develop a new method to find the approximation of the root α of the nonlinear equation f(x)=0. This method has the efficiency index which equals 61/4=1.5651. The benefit of this method is that this method does not need to calculate any derivative. Several examples illustrate that the efficiency of the new method is better than that of previous methods.


2007 ◽  
Vol 84 (3) ◽  
pp. 369-375 ◽  
Author(s):  
A. Rafiq ◽  
S. Hussain ◽  
F. Ahmad ◽  
M. Awais ◽  
F. Zafar

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Sukhjit Singh ◽  
D. K. Gupta

A new iterative method is described for finding the real roots of nonlinear equations inR. Starting with a suitably chosenx0, the method generates a sequence of iterates converging to the root. The convergence analysis is provided to establish its sixth order of convergence. The number of iterations and the total number of function evaluations used to get a simple root are taken as performance measure of our method. The efficacy of the method is tested on a number of numerical examples and the results obtained are summarized in tables. It is observed that our method is superior to Newton’s method and other sixth order methods considered.


2015 ◽  
Vol 12 (3) ◽  
pp. 632-637 ◽  
Author(s):  
Baghdad Science Journal

In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rajni Sharma ◽  
Ashu Bahl

A general scheme of third order convergence is described for finding multiple roots of nonlinear equations. The proposed scheme requires one evaluation of f, f′, and f′′ each per iteration and contains several known one-point third order methods for finding multiple roots, as particular cases. Numerical examples are included to confirm the theoretical results and demonstrate convergence behavior of the proposed methods. In the end, we provide the basins of attraction for some methods to observe their dynamics in the complex plane.


2017 ◽  
Vol 10 (1) ◽  
pp. 144-150 ◽  
Author(s):  
V.B Vatti ◽  
Ramadevi Sri ◽  
M.S Mylapalli

In this paper, we suggest and discuss an iterative method for solving nonlinear equations of the type f(x)=0 having eighteenth order convergence. This new technique based on Newton’s method and extrapolated Newton’s method. This method is compared with the existing ones through some numerical examples to exhibit its superiority. AMS Subject Classification: 41A25, 65K05, 65H05.


2012 ◽  
Vol 220-223 ◽  
pp. 2585-2588
Author(s):  
Zhong Yong Hu ◽  
Fang Liang ◽  
Lian Zhong Li ◽  
Rui Chen

In this paper, we present a modified sixth order convergent Newton-type method for solving nonlinear equations. It is free from second derivatives, and requires three evaluations of the functions and two evaluations of derivatives per iteration. Hence the efficiency index of the presented method is 1.43097 which is better than that of classical Newton’s method 1.41421. Several results are given to illustrate the advantage and efficiency the algorithm.


Sign in / Sign up

Export Citation Format

Share Document