scholarly journals On the Properties of Algebraic Geometric Codes as Copy Protection Codes

2020 ◽  
Vol 27 (1) ◽  
pp. 22-38
Author(s):  
Vladimir M. Deundyak ◽  
Denis V. Zagumennov

Traceability schemes which are applied to the broadcast encryption can prevent unauthorized parties from accessing the distributed data. In a traceability scheme a distributor broadcasts the encrypted data and gives each authorized user unique key and identifying word from selected error-correcting code for decrypting. The following attack is possible in these schemes: groups of c malicious users are joining into coalitions and gaining illegal access to the data by combining their keys and identifying codewords to obtain pirate key and codeword. To prevent this attacks, classes of error-correcting codes with special c-FP and c-TA properties are used. In particular, c -FP codes are codes that make direct compromise of scrupulous users impossible and c -TA codes are codes that make it possible to identify one of the a‹ackers. We are considering the problem of evaluating the lower and the upper boundaries on c, within which the L-construction algebraic geometric codes have the corresponding properties. In the case of codes on an arbitrary curve the lower bound for the c-TA property was obtained earlier; in this paper, the lower bound for the c-FP property was constructed. In the case of curves with one infinite point, the upper bounds for the value of c are obtained for both c-FP and c-TA properties. During our work, we have proved an auxiliary lemma and the proof contains an explicit way to build a coalition and a pirate identifying vector. Methods and principles presented in the lemma can be important for analyzing broadcast encryption schemes robustness. Also, the c-FP and c-TA boundaries monotonicity by subcodes are proved.

2021 ◽  
pp. 55-74
Author(s):  
V. M. Deundyak ◽  
◽  
D. V. Zagumennov ◽  
◽  

Broadcast encryption is a data distribution protocol which can prevent malefactor parties from unauthorized accessing or copying the distributed data. It is widely used in distributed storage and network data protection schemes. To block the socalled coalition attacks on the protocol, classes of error-correcting codes with special properties are used, namely c-FP and c-TA properties. We study the problem of evaluating the lower and the upper boundaries on coalition power, within which the algebraic geometry codes possess these properties. Earlier, these boundaries were calculated for single-point algebraic-geometric codes on curves of the general form. Now, we clarified these boundaries for single-point codes on curves of a special form; in particular, for codes on curves on which there are many equivalence classes after factorization by equality of the corresponding points coordinates relation.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 789
Author(s):  
Emanuele Bellini ◽  
Chiara Marcolla ◽  
Nadir Murru

In addition to their usefulness in proving one’s identity electronically, identification protocols based on zero-knowledge proofs allow designing secure cryptographic signature schemes by means of the Fiat–Shamir transform or other similar constructs. This approach has been followed by many cryptographers during the NIST (National Institute of Standards and Technology) standardization process for quantum-resistant signature schemes. NIST candidates include solutions in different settings, such as lattices and multivariate and multiparty computation. While error-correcting codes may also be used, they do not provide very practical parameters, with a few exceptions. In this manuscript, we explored the possibility of using the error-correcting codes proposed by Stakhov in 2006 to design an identification protocol based on zero-knowledge proofs. We showed that this type of code offers a valid alternative in the error-correcting code setting to build such protocols and, consequently, quantum-resistant signature schemes.


Sign in / Sign up

Export Citation Format

Share Document