scholarly journals representative driven system to interrogate passive dynamics of an airfoil in the wake of a cylinder

Author(s):  
Morgan Louise Hooper ◽  
Beverley Jane McKeon

Passive motion of an airfoil in the wake of a circular cylinder is compared with driven motion of an airfoil in the same configuration, through simultaneous measurement of both the airfoil dynamics and the surrounding flow field. The passive mounting allows the airfoil to move in the transverse (heaving) direction in response to oncoming forcing, while introducing significant parasitic effects to the dynamics including friction. The driven motion of the airfoil reproduces important characteristics of the imperfect passive motion, validating idealized sinusoidal motion as a model for dynamics of the passive airfoil operating in a more realistic engineering context. Particle Image Velocimetry (PIV) of the driven case is then used to illuminate flow structures contributing to observed power and thrust production in both cases.

2002 ◽  
Vol 33 (6) ◽  
pp. 794-800 ◽  
Author(s):  
U. Dierksheide ◽  
P. Meyer ◽  
T. Hovestadt ◽  
W. Hentschel

2010 ◽  
Vol 43 (6) ◽  
pp. 1039-1047 ◽  
Author(s):  
Emily J. Berg ◽  
Jessica L. Weisman ◽  
Michael J. Oldham ◽  
Risa J. Robinson

2006 ◽  
Author(s):  
Renqiang Xiong ◽  
J. N. Chung

Flow structures and pressure drops were investigated in rectangular serpentine micro-channels with miter bends which had hydraulic diameters of 0.209mm, 0.395mm and 0.549mm respectively. To evaluate the bend effect, the additional pressure drop due to the miter bend must be obtained. Three groups of micro-channels were fabricated to remove the inlet and outlet losses. A validated micro-particle image velocimetry (μPIV) system was used to achieve the flow structure in a serpentine micro-channel with hydraulic diameter of 0.173mm. The experimental results show the vortices around the outer and inner walls of the bend do not form when Re<100. Those vortices appear and continue to develop with the Re number when Re> 100-300, and the shape and size of the vortices almost remain constant when Re>1000. The bend loss coefficient Kb was observed to be related with the Re number when Re<100, with the Re number and channel size when Re>100. It almost keeps constant and changes in the range of ± 10% When Re is larger than some value in 1300-1500. And a size effect on Kb was also observed.


Sign in / Sign up

Export Citation Format

Share Document