stereoscopic particle image velocimetry
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 69)

H-INDEX

30
(FIVE YEARS 4)

Author(s):  
Deb Banerjee ◽  
Ahmet Selamet ◽  
Rick Dehner

Abstract Stereoscopic Particle Image Velocimetry measurements are carried out at the inlet of a turbocharger compressor at four different shaft speeds from 80,000 rpm to 140,000 rpm and over the entire range of flow rates from choke to mild surge. This paper describes the procedure used in processing the PIV data leading to the estimates of turbulent length scales - integral, Taylor, and Kolmogorov, to enhance the fundamental understanding and characterization of the compressor inlet flow field. The analysis reveals that at most operating conditions the three different length scales have markedly different magnitudes, as expected, while they have somewhat similar qualitative distributions with respect to the duct radius. For example, at 80,000 rpm and at a flow rate of 15.7 g/s (mild surge), the longitudinal integral length scale is of the order of 15 mm, the Taylor scale is around 0.5 mm, and the Kolmogorov scale is about 10 microns. With the onset of flow reversal, the turbulent kinetic energy and turbulent intensity at the compressor inlet are observed to increase rapidly, while the magnitudes of the Kolmogorov scale and to a certain extent, the Taylor scale are found to decrease suggesting that the increased turbulence gives rise to even smaller flow structures. The variation of length scales with compressor shaft speed has also been studied.


2022 ◽  
Vol 933 ◽  
Author(s):  
Kristofer M. Womack ◽  
Ralph J. Volino ◽  
Charles Meneveau ◽  
Michael P. Schultz

Aiming to study the rough-wall turbulent boundary layer structure over differently arranged roughness elements, an experimental study was conducted on flows with regular and random roughness. Varying planform densities of truncated cone roughness elements in a square staggered pattern were investigated. The same planform densities were also investigated in random arrangements. Velocity statistics were measured via two-component laser Doppler velocimetry and stereoscopic particle image velocimetry. Friction velocity, thickness, roughness length and zero-plane displacement, determined from spatially averaged flow statistics, showed only minor differences between the regular and random arrangements at the same density. Recent a priori morphometric and statistical drag prediction methods were evaluated against experimentally determined roughness length. Observed differences between regular and random surface flow parameters were due to the presence of secondary flows which manifest as high-momentum pathways and low-momentum pathways in the streamwise velocity. Contrary to expectation, these secondary flows were present over the random surfaces and not discernible over the regular surfaces. Previously identified streamwise-coherent spanwise roughness heterogeneity does not seem to be present, suggesting that such roughness heterogeneity is not necessary to sustain secondary flows. Evidence suggests that the observed secondary flows were initiated at the front edge of the roughness and sustained over irregular roughness. Due to the secondary flows, local turbulent boundary layer profiles do not scale with local wall shear stress but appear to scale with local turbulent shear stress above the roughness canopy. Additionally, quadrant analysis shows distinct changes in the populations of ejection and sweep events.


2022 ◽  
Vol 34 (1) ◽  
pp. 017102
Author(s):  
Peng Xu ◽  
Chun-yu Guo ◽  
Yang Han ◽  
Xiao-jun Bi ◽  
Yun-fei Kuai ◽  
...  

2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Clemens Schwarz ◽  
Andrew Bodling ◽  
C. Christian Wolf ◽  
Robert Brinkema ◽  
Mark Potsdam ◽  
...  

AbstractThe blade tip vortex system is a crucial feature in the wake of helicopter rotors, and its correct prediction represents a major challenge in the numerical simulation of rotor flows. A common phenomenon in modern high-fidelity CFD simulations is the breakdown of the primary vortex system in hover due to secondary vortex braids. Since they are strongly influenced by the numerical settings, the degree to which these secondary vortex structures actually physically occur is still discussed and needs experimental validation. In the current work, the development of secondary vortex structures in the wake of a two-bladed rotor in hover conditions was investigated by combining stereoscopic particle image velocimetry measurements in different measurement planes and high-fidelity simulations. Secondary vortex structures were detected and quantified at different axial locations in the wake by applying an identical scheme to the measured and simulated velocity data. In agreement, it was found that the number of secondary vortices is maximum at a distance of $$0.8\,R$$ 0.8 R below the rotor. The more intense secondary vortex structures were quantitatively well captured in the simulation, whereas in the experiment a larger number of weaker vortices were detected. No distinct preferential direction of rotation was found for the secondary vortices, but they tended to develop in vortex pairs with alternating sense of rotation. A clustered occurrence of secondary vortices was observed close to the primary tip vortices, where the rolled-up blade shear layer breaks down into coherent vortex structures. Graphical abstract


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 430
Author(s):  
Marwan Alkheir ◽  
Hassan H. Assoum ◽  
Nour Eldin Afyouni ◽  
Kamel Abed Meraim ◽  
Anas Sakout ◽  
...  

Impinging jets are of high interest in many industrial applications and their flow dynamics has a complex three-dimensional behavior. These jets can result in a high noise generation leading to acoustic discomfort. Thus, a passive control mechanism which consists of introducing a thin rod in the flow of the jet is proposed in order to reduce the noise generation. The stereoscopic particle image velocimetry (SPIV) technique is employed to measure the three velocity components in a plane. An experimental difficulty is encountered to acquire images of the flow in the shadow of the rod which block a part of the field of interest. In this paper, an experimental arrangement is proposed in order to overcome this experimental difficulty using a combined SPIV technique denoted by (C-SPIV). This technique consists of using an inclined mirror to illuminate the area under the rod by reflecting the laser light and two independent systems of SPIV synchronized and correlated together in order to obtain the combined field of velocity in the same plane above and below the rod. The C-SPIV measurements allowed to obtain the kinematic field in the whole area of interest. Thus, vortex shedding frequency, Turbulent Kinetic Energy were calculated and analyzed along with the acoustic signal. These results are of high interest when seeking for noise reduction in such jet configuration.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 383
Author(s):  
Alexey Savitskii ◽  
Aleksei Lobasov ◽  
Dmitriy Sharaborin ◽  
Vladimir Dulin

The present paper reports on the combined stereoscopic particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) measurements of turbulent transport for model swirl burners without combustion. Two flow types were considered, namely the mixing of a free jet with surrounding air for different swirl rates of the jet (Re = 5 × 103) and the mixing of a pilot jet (Re = 2 × 104) with a high-swirl co-flow of a generic gas turbine burner (Re = 3 × 104). The measured spatial distributions of the turbulent Reynolds stresses and fluxes were compared with their predictions by gradient turbulent transport models. The local values of the turbulent viscosity and turbulent diffusivity coefficients were evaluated based on Boussinesq’s and gradient diffusion hypotheses. The studied flows with high swirl were characterized by a vortex core breakdown and intensive coherent flow fluctuations associated with large-scale vortex structures. Therefore, the contribution of the coherent flow fluctuations to the turbulent transport was evaluated based on proper orthogonal decomposition (POD). The turbulent viscosity and diffusion coefficients were also evaluated for the stochastic (residual) component of the velocity fluctuations. The high-swirl flows with vortex breakdown for the free jet and for the combustion chamber were characterized by intensive turbulent fluctuations, which contributed substantially to the local turbulent transport of mass and momentum. Moreover, the high-swirl flows were characterized by counter-gradient transport for one Reynolds shear stress component near the jet axis and in the outer region of the mixing layer.


Author(s):  
David Rooney ◽  
Patrick Mortimer ◽  
Frank Tricouros ◽  
John Vaccaro

Abstract The flow field behind spinning baseballs at two different seam orientations was investigated, and compared with a smooth sphere, to isolate effects of seams on the Magnus effect at Reynolds numbers of 5×104 and 1×105. The rotational speed of the three spheres varied from 0-2400 rpm, which are typical of spin rates imparted to a thrown baseball. These spin rates are represented non-dimensionally as a relative spin rate relating the surface tangential velocity to the freestream velocity, and varied between 0-0.94. Mean velocity profiles, streamline patterns, and power spectral density of the velocity signals were taken using hot-wire anemometry and/or stereoscopic particle image velocimetry in the wake region. The sphere wake orientation changed over a range of relative spin rates, indicating an inverse Magnus effect. Vortex shedding at a Strouhal number of 0.25 was present on the sphere at low relative spin rates. However, the seams on the baseball prevented any consequential change in wake orientation and, at most spin rates, suppressed the shedding frequency exhibited by the sphere. Instead, frequencies corresponding to the seam rotation rates were observed in the wake flow. It was concluded that the so-called inverse Magnus effect recorded by previous investigators at specific combinations of Reynolds number and relative spin rate on a sphere exists for a smooth sphere or an axisymmetrically dimpled sphere but not for a baseball near critical Reynolds numbers, where the wake flow pattern is strongly influenced by the raised seams.


2021 ◽  
Vol 236 ◽  
pp. 109442
Author(s):  
Chun-yu Guo ◽  
Peng Xu ◽  
Yang Han ◽  
Guang-li Zhou ◽  
Yun-fei Kuai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document