scholarly journals Effect of Visual Extensions on Natural Language Understanding in Vision-and-Language Models

Author(s):  
Taichi Iki ◽  
Akiko Aizawa
2021 ◽  
Vol 4 ◽  
Author(s):  
Magnus Sahlgren ◽  
Fredrik Carlsson

This paper discusses the current critique against neural network-based Natural Language Understanding solutions known as language models. We argue that much of the current debate revolves around an argumentation error that we refer to as the singleton fallacy: the assumption that a concept (in this case, language, meaning, and understanding) refers to a single and uniform phenomenon, which in the current debate is assumed to be unobtainable by (current) language models. By contrast, we argue that positing some form of (mental) “unobtanium” as definiens for understanding inevitably leads to a dualistic position, and that such a position is precisely the original motivation for developing distributional methods in computational linguistics. As such, we argue that language models present a theoretically (and practically) sound approach that is our current best bet for computers to achieve language understanding. This understanding must however be understood as a computational means to an end.


1998 ◽  
Vol 37 (04/05) ◽  
pp. 327-333 ◽  
Author(s):  
F. Buekens ◽  
G. De Moor ◽  
A. Waagmeester ◽  
W. Ceusters

AbstractNatural language understanding systems have to exploit various kinds of knowledge in order to represent the meaning behind texts. Getting this knowledge in place is often such a huge enterprise that it is tempting to look for systems that can discover such knowledge automatically. We describe how the distinction between conceptual and linguistic semantics may assist in reaching this objective, provided that distinguishing between them is not done too rigorously. We present several examples to support this view and argue that in a multilingual environment, linguistic ontologies should be designed as interfaces between domain conceptualizations and linguistic knowledge bases.


1995 ◽  
Vol 34 (04) ◽  
pp. 345-351 ◽  
Author(s):  
A. Burgun ◽  
L. P. Seka ◽  
D. Delamarre ◽  
P. Le Beux

Abstract:In medicine, as in other domains, indexing and classification is a natural human task which is used for information retrieval and representation. In the medical field, encoding of patient discharge summaries is still a manual time-consuming task. This paper describes an automated coding system of patient discharge summaries from the field of coronary diseases into the ICD-9-CM classification. The system is developed in the context of the European AIM MENELAS project, a natural-language understanding system which uses the conceptual-graph formalism. Indexing is performed by using a two-step processing scheme; a first recognition stage is implemented by a matching procedure and a secondary selection stage is made according to the coding priorities. We show the general features of the necessary translation of the classification terms in the conceptual-graph model, and for the coding rules compliance. An advantage of the system is to provide an objective evaluation and assessment procedure for natural-language understanding.


Sign in / Sign up

Export Citation Format

Share Document