Real Power Loss Reduction by Enhanced Trailblazer Optimization Algorithm

Author(s):  
K. Lenin

In this paper Teaching learning based Trailblazer optimization algorithm (TLBOTO) is used for solving the power loss lessening problem. Trailblazer optimization algorithm (TOA) is alienated into dual phases for exploration: trailblazer phase and adherent phase. Both phases epitomize the exploration and exploitation phase of TOA correspondingly. Nevertheless, in order to avoid the solution falling in local optimum in this paper Teaching-learning-based optimization (TLBO) is integrated with TOA approach. Learning segment of the TLBO algorithm is added to the adherent phase. Proposed Teaching learning based Trailblazer optimization algorithm (TLBOTO) augment exploration capability of the algorithm and upsurge the convergence speed. Algorithm's exploration competences enhanced by linking the teaching phase and learning. Exploration segment of the trailblazer algorithm identifies the zone with the pre-eminent solution. Subsequently inducing the teaching process, the trailblazer performs as a teacher to teach additional entities and engender a new-fangled entity. The new-fangled unit is equated with the trailblazer, and with reference to the greedy selection norm, the optimal one is designated as the trailblazer to endure exploration. The location of trailblazer is modernized. Legitimacy of the Teaching learning based Trailblazer optimization algorithm (TLBOTO) is substantiated in IEEE 30 bus system (with and devoid of L-index). Actual power loss lessening is reached. Proportion of actual power loss lessening is augmented

2020 ◽  
Vol 7 (2) ◽  
pp. E1-E6
Author(s):  
L. Kanagasabai

This paper aims to use the Rock Dove (RD) optimization algorithm and the Fuligo Septica optimization (FSO) algorithm for power loss reduction. Rock Dove towards a particular place is based on the familiar (sight) objects on the traveling directions. In the formulation of the RD algorithm, atlas and range operator, and familiar sight operators have been defined and modeled. Every generation number of Rock Dove is reduced to half in the familiar sight operator and Rock Dove segment, which hold the low fitness value that occupying the lower half of the generation will be discarded. Because it is implicit that the individual’s Rock Dove is unknown with familiar sights and very far from the destination place, a few Rock Doves will be at the center of the iteration. Each Rock Dove can fly towards the final target place. Then in this work, the FSO algorithm is designed for real power loss reduction. The natural vacillation mode of Fuligo Septica has been imitated to develop the algorithm. Fuligo Septica connects the food through swinging action and possesses exploration and exploitation capabilities. Fuligo Septica naturally lives in chilly and moist conditions. Mainly the organic matter in the Fuligo Septica will search for the food and enzymes formed will digest the food. In the movement of Fuligo Septica it will spread like a venous network, and cytoplasm will flow inside the Fuligo Septica in all ends. THE proposed RD optimization algorithm and FSO algorithm have been tested in IEEE 14, 30, 57, 118, and 300 bus test systems and simulation results show the projected RD and FSO algorithm reduced the real power loss. Keywords: optimal reactive power, transmission loss, Rock Dove, Fuligo Septica.


Author(s):  
M. O. Okelola ◽  
O.E Olabode ◽  
T.O. Ajewole

The ever increasing sensitization on the need for clean energies that are not only environmental friendly but also have comparative cost advantages encourages the use of distributed generation. Using distributed generation at the load ends or close to the load centers has not only reduced carbon emission, but also improves power system performances. Presented in this paper is the adoption of Teaching-Learning Based Optimization technique for determining the most suitable site and size of distributed generation for real power loss reduction on Nigerian power system. Backward/Forward Sweep technique was employed for the power flow analysis, while the suitable locations of the distributed generations were pre-selected using Voltage Stability Index and Teaching-Learning Based Optimization technique was employed to establish the optimal location and the optimum size of the required distributed generation. This approach was demonstrated on the IEEE 34-bus test system, with the placement of 1 kW DG at bus 11 of the system. The aggregate real power loss diminished from 571 kW to 208.5954 kW (63.5726% reduction), while Voltage Stability Index and voltage profile of the system also improved remarkably. Also, by placing distributed generation on typical Nigerian 11 kV feeder, the real power loss reduced from 1.1 kW to 0.75 kW while the magnitude of bus voltage increased from 0.8295 to 0.8456 p.u. Based on the results of this analysis, Teaching-Learning Based Optimization has demonstrated excellent performance on the two test cases and therefore would be a tool to adopt on the Nigerian radial distribution system.


Author(s):  
Lenin Kanagasabai

In this paper Cinnamon ibon Search Optimization Algorithm (CSOA) is used for solving the power loss lessening problem. Key objectives of the paper are Real power Loss reduction, Voltage stability enhancement and minimization of Voltage deviation. Searching and scavenging behavior of Cinnamon ibon has been imitated to model the algorithm. Cinnamon ibon birds which are in supremacy of the group are trustworthy to be hunted by predators and dependably attempt to achieve a improved position and the Cinnamon ibon ones that are positioned in the inner of the population, drive adjacent to the nearer populations to dodge the threat of being confronted. The systematic model of the Cinnamon ibon search Algorithm originates with an arbitrary individual of Cinnamon ibon. The Cinnamon ibon search algorithm entities show the position of the Cinnamon ibon. Besides, the Cinnamon ibon bird is supple in using the cooperating plans and it alternates between the fabricator and the cadger. Successively the Cinnamon ibon identifies the predator position; then they charm the others by tweeting signs. The cadgers would be focussed to the imperilled regions by fabricators once the fear cost is more than the defence threshold. Likewise, the subterfuge of both the cadger and the fabricator is commonly used by Cinnamon ibon. The dispersion of the Cinnamon ibon location in the solution area is capricious. An impulsive drive approach was applied when dispossession of any adjacent Cinnamon ibon in the purlieu of the present population. This style diminishes the convergence tendency and decreases the convergence inexorableness grounded on the controlled sum of iterations. Authenticity of the Cinnamon ibon Search Optimization Algorithm (CSOA) is corroborated in IEEE 30 bus system (with and devoid of L-index). Genuine power loss lessening is attained. Proportion of actual power loss lessening is amplified.


2021 ◽  
Vol 8 (1) ◽  
pp. E1-E8
Author(s):  
L. Kanagasabai

In this paper, the heat transfer optimization (HTO) algorithm and simulated coronary circulation system (SCCS) optimization algorithm has been designed for Real power loss reduction. In the projected HTO algorithm, every agent is measured as a cooling entity and surrounded by another agent, like where heat transfer will occur. Newton’s law of cooling temperature will be updated in the proposed HTO algorithm. Each value of the object is computed through the objective function. Then the objects are arranged in increasing order concerning the objective function value. This projected algorithm time “t” is linked with iteration number, and the value of “t” for every agent is computed. Then SCCS optimization algorithm is projected to solve the optimal reactive power dispatch problem. Actions of human heart veins or coronary artery development have been imitated to design the algorithm. In the projected algorithm candidate solution is made by considering the capillaries. Then the coronary development factor (CDF) will appraise the solution, and population space has been initiated arbitrarily. Then in the whole population, the most excellent solution will be taken as stem, and it will be the minimum value of the Coronary development factor. Then the stem crown production is called the divergence phase, and the other capillaries’ growth is known as the clip phase. Based on the arteries leader’s coronary development factor (CDF), the most excellent capillary leader’s (BCL) growth will be there. With and without L-index (voltage stability), HTO and SCCS algorithm’s validity are verified in IEEE 30 bus system. Power loss minimized, voltage deviation also reduced, and voltage stability index augmented.


Author(s):  
Lenin Kanagasabai

In this work Advanced Teaching-Learning-Based Optimization algorithm (ATLBO) is proposed to solve the optimal reactive power problem. Teaching-Learning-Based Optimization (TLBO) optimization algorithm has been framed on teaching learning methodology happening in classroom. Algorithm consists of “Teacher Phase”, “Learner Phase”. In the proposed Advanced Teaching-Learning-Based Optimization algorithm non-linear inertia weighted factor is introduced into the fundamental TLBO algorithm to manage the memory rate of learners.  In order to control the learner’s mutation arbitrarily during the learning procedure a non-linear mutation factor has been applied. Proposed Advanced Teaching-Learning-Based Optimization algorithm (ATLBO) has been tested in standard IEEE 14, 30 bus test systems and simulation results show the proposed algorithm reduced the real power loss effectively.


Author(s):  
K. Lenin

<p class="Abstract">This paper presents an Enhanced Teaching-Learning-Based Optimization (ETLBO) algorithm for solving reactive power flow problem. Basic Teaching-Learning-Based Optimization (TLBO) is reliable, accurate and vigorous for solving the optimization problems. Also it has been found that TLBO algorithm slow in convergence due to its high concentration in the accuracy. This paper presents an, enhanced version of TLBO algorithm, called as enhanced Teaching-Learning-Based Optimization (ETLBO). A parameter called as “weight” has been included in the fundamental TLBO equations &amp; subsequently it increases the rate of convergence. In order to evaluate the proposed algorithm, it has been tested in Standard IEEE 57,118 bus systems and compared to other standard reported algorithms. Simulation results reveal about the better performance of the proposed algorithm in reducing the real power loss &amp; voltage profiles are within the limits.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document