Effects of Prescribed Fire on Winter Assemblages of Birds in Ponderosa Pine Forests of Northern Arizona

2010 ◽  
Vol 55 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Theresa L. Pope ◽  
William M. Block
2019 ◽  
Vol 450 ◽  
pp. 117502 ◽  
Author(s):  
Jose M. Iniguez ◽  
James F. Fowler ◽  
W. Keith Moser ◽  
Carolyn H. Sieg ◽  
L. Scott Baggett ◽  
...  

2002 ◽  
Vol 11 (1) ◽  
pp. 1 ◽  
Author(s):  
Jolie Pollet ◽  
Philip N. Omi

Fire exclusion policies have affected stand structure and wildfire hazard in north American ponderosa pine forests. Wildfires are becoming more severe in stands where trees are densely stocked with shade-tolerant understory trees. Although forest managers have been employing fuel treatment techniques to reduce wildfire hazard for decades, little scientific evidence documents the success of treatments in reducing fire severity. Our research quantitatively examined fire effects in treated and untreated stands in western United States national forests. Four ponderosa pine sites in Montana, Washington, California and Arizona were selected for study. Fuel treatments studied include: prescribed fire only, whole-tree thinning, and thinning followed by prescribed fire. On-the-ground fire effects were measured in adjacent treated and untreated forests. We developed post facto fire severity and stand structure measurement techniques to complete field data collection. We found that crown fire severity was mitigated in stands that had some type of fuel treatment compared to stands without any treatment. At all four of the sites, the fire severity and crown scorch were significantly lower at the treated sites. Results from this research indicate that fuel treatments, which remove small diameter trees, may be beneficial for reducing crown fire hazard in ponderosa pine sites.


2012 ◽  
Vol 22 (1) ◽  
pp. 204-217 ◽  
Author(s):  
E. L. Kalies ◽  
B. G. Dickson ◽  
C. L. Chambers ◽  
W. W. Covington

2011 ◽  
Vol 45 (12) ◽  
pp. 2087-2094 ◽  
Author(s):  
Marin S. Robinson ◽  
Min Zhao ◽  
Lindsay Zack ◽  
Christine Brindley ◽  
Lillian Portz ◽  
...  

2015 ◽  
Vol 79 (8) ◽  
pp. 1369-1377 ◽  
Author(s):  
Joseph L. Ganey ◽  
Gary C. White ◽  
Jeffrey S. Jenness ◽  
Scott C. Vojta

2007 ◽  
Vol 16 (1) ◽  
pp. 119 ◽  
Author(s):  
Shawn Michael Faiella ◽  
John Duff Bailey

Fuel moisture is an important variable in estimating fire behaviour and wildfire hazard. We measured three replicates each of thin-and-burn, burn-only, and control treatments in semi-arid ponderosa pine forests of northern Arizona, USA to quantify temporal changes and treatment effects on live foliar and dead fuel moisture content. Overstorey structure and canopy bulk density were reduced 40–75% in the thin-and-burn treatment v. the burn-only and control treatments. Fluctuations in foliar moisture content varied temporally and across study areas. In 2003, a significant treatment effect was found for two study sites for 1-year-old foliage, but no significant treatment effect was found for new foliage. In 2004, a significant treatment effect was found across all three study sites for both 1-year-old and new foliage. However, no clear pattern existed regarding a specific treatment and its effect on moisture content of old or new foliage. No conclusive evidence was found for a significant treatment effect on the moisture content of fuel particles in the size classes of 0–6, 6–25, and 25–100-mm diameter. Proposals regarding amplified fire behaviour as a consequence of reduced fuel moisture contents in treated v. untreated forest stands in semi-arid ponderosa pine forests of northern Arizona therefore appear to be unwarranted.


Sign in / Sign up

Export Citation Format

Share Document