Moisture Content
Recently Published Documents


TOTAL DOCUMENTS

12931
(FIVE YEARS 5340)

H-INDEX

93
(FIVE YEARS 26)

2022 ◽  
Vol 314 ◽  
pp. 108782
Author(s):  
Li Zhao ◽  
Marta Yebra ◽  
Albert I.J.M. van Dijk ◽  
Geoffrey J. Cary ◽  
Dale Hughes

2022 ◽  
Vol 228 ◽  
pp. 107144
Author(s):  
Zeyang Song ◽  
Tiancheng He ◽  
Maorui Li ◽  
Dejian Wu ◽  
Fei You

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 168
Author(s):  
Jie Zhang ◽  
Bin Feng ◽  
Xiuzhen Yu ◽  
Chao Zhao ◽  
Hao Li ◽  
...  

With the development of straw baling mechanization technology, straw is stored in the form of square baling or round baling. At present, hammer mill or the guilt-cutting and rubbing combined mill is widely used to crush square bales of straw. These two kinds of crushing equipment have disadvantages such as low productivity, large power consumption, and poor crushing effect. This paper aims to study and analyze the crushing characteristics of square baled straw after unbaling, and lay a theoretical foundation for the later research and development of a special square baled straw crusher with high productivity, low power consumption, good crushing effect, and the simulation of the square baled corn straw crushing process. For this purpose, this study carried out a corn bale crushing experiment on the Instron 8801 fatigue test machine, and studied the effects of blade angle, water content and loading speed on corn bale crushing force through the response surface method. Test results showed that the crushing process includes the compression stage and shearing stage; in terms of single factor effect, with the increase in water content and blade angle, the crushing force of the corn bale increased, but the loading speed had no significant effect on the crushing force of the corn bale. In terms of interaction effect, there was interaction effect between moisture content and blade inclination angle, when moisture content was 10%, with the increase in blade inclination angle, the incremental speed of the crushing force also increased gradually. When the blade inclination angle was 10°, with the increase in moisture content, the incremental speed of the crushing force also increased, and the interaction effect of them jointly acted on the crushing force of the corn bales.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 336
Author(s):  
Yu Shang ◽  
Qiang Liu ◽  
Chen Mao ◽  
Sen Wang ◽  
Fan Wang ◽  
...  

Cellulose insulation polymer material is widely used in oil immersed bushing. Moisture is one of the important reasons for the deterioration of cellulose polymer insulation, which seriously threatens the safe and stable operation of bushing. It is significant to study the polarization and depolarization behavior of oil-immersed cellulose polymer insulation with different moisture condition under higher voltage. Based on polarization/depolarization current method and charge difference method, the polarization/depolarization current, interfacial polarization current and electrical conductivity of cellulose polymer under different DC voltages and humidity were obtained. Based on molecular-dynamics simulation, the effect of moisture on cellulose polymer insulation was analyzed. The results show that the polarization and depolarization currents become larger with the increase in DC voltage and moisture. The higher applied voltage will accelerate the charge carrier motion. The ionization of water molecules will produce more charge carriers. Thus, high DC voltage and moisture content will increase the interface polarization current. Increased moisture content results in more charge carriers ionized by water molecules. In addition, the invasion of moisture will reduce the band width of cellulose polymer and enhance its electrostatic potential, so as to improve its overall electrical conductivity. This paper provides a reference for analyzing the polarization characteristics of charge carriers in cellulose polymer insulation.


2022 ◽  
Vol 12 (2) ◽  
pp. 826
Author(s):  
Jing Yuan ◽  
Bo Yu ◽  
Changxiang Yan ◽  
Junqiang Zhang ◽  
Ning Ding ◽  
...  

It is found that the remote sensing parameters such as spectral range, spectral resolution and signal-to-noise ratio directly affect the estimation accuracy of soil moisture content. However, the lack of research on the relationship between the parameters and estimation accuracy restricts the prolongation of application. Therefore, this study took the demand for this application as the foothold for developing spectrometry. Firstly, a method based on sensitivity analysis of soil radiative transfer model-successive projection algorithm (SA-SPA) was proposed to select sensitive wavelengths. Then, the spectral resampling method was used to select the best spectral resolution in the corresponding sensitive wavelengths. Finally, the noise-free spectral data simulated by the soil radiative transfer model was added with Gaussian random noise to change the signal-to-noise ratio, so as to explore the influence of signal-to-noise ratio on the estimation accuracy. The research results show that the estimation accuracy obtained through the SA-SPA (RMSEP < 12.1 g kg−1) is generally superior to that from full-spectrum data (RMSEP < 14 g kg−1). At selected sensitive wavelengths, the best spectral resolution is 34 nm, and the applicable signal-to-noise ratio ranges from 150 to 350. This study provides technical support for the efficient estimation of soil moisture content and the development of spectrometry, which comprehensively considers the common influence of spectral range, spectral resolution and signal-to-noise ratio on the estimation accuracy of soil moisture content.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Assefa Tesfaye ◽  
Fentahun Workie ◽  
Venkatesh S. Kumar

Biomass energy accounts for more than 92 percent of overall energy consumption in Ethiopia. As a result, Ethiopia is one of the world’s most biomass-dependent countries. The high reliance on wood fuels and agricultural residues for fuel harms society’s social, economic, and environmental well-being. This study aims to create and test the quality of fuel briquettes made from the coffee husk. Also built and produced are a carboniser/charcoal kiln, a manually operated molder system, and a briquette stove for burning the manufactured briquette. The carboniser converts 15 kg of raw coffee husk into 6 kg of carbonised char in 25 minutes, and the manually operated briquette molder can press 30 kg per hour. The efficiency of converting raw coffee husk into carbonised char content was 40.12%. In the geological survey of Ethiopia, the geochemical laboratory directorate received triplicate samples of the fuel briquette charcoal for analysis. Moisture content, fixed carbon content, ash content, sulfur content, and calorific value were determined using a bomb calorimeter and a ceramic lining furnace. Physical properties of fuel briquettes ranged from 10.03% moisture content, 970 kg/m3 density, 81% fixed carbon, 5.15% ash content, 0% sulfur, and 30.54 Kcal/kg higher heating value, according to laboratory results. The results of the study revealed that the coffee husk fuel briquettes produced have more positive characteristics. Fuel briquettes were cost-effective and environmentally friendly and reduced deforestation compared to firewood. This study clearly shows that briquettes made from coffee husk could be used as an alternative energy source when this kind of waste is well managed.


Sign in / Sign up

Export Citation Format

Share Document