scholarly journals On some stochastic mirror descent methods for constrained online optimization problems

2019 ◽  
Vol 11 (2) ◽  
pp. 205-217 ◽  
Author(s):  
Mohammad S. Alkousa
Author(s):  
Alexander A. Titov ◽  
Fedor S. Stonyakin ◽  
Alexander V. Gasnikov ◽  
Mohammad S. Alkousa

2018 ◽  
Vol 58 (11) ◽  
pp. 1728-1736 ◽  
Author(s):  
A. S. Bayandina ◽  
A. V. Gasnikov ◽  
E. V. Gasnikova ◽  
S. V. Matsievskii

Author(s):  
Ion Necoara ◽  
Martin Takáč

Abstract In this paper we consider large-scale smooth optimization problems with multiple linear coupled constraints. Due to the non-separability of the constraints, arbitrary random sketching would not be guaranteed to work. Thus, we first investigate necessary and sufficient conditions for the sketch sampling to have well-defined algorithms. Based on these sampling conditions we develop new sketch descent methods for solving general smooth linearly constrained problems, in particular, random sketch descent (RSD) and accelerated random sketch descent (A-RSD) methods. To our knowledge, this is the first convergence analysis of RSD algorithms for optimization problems with multiple non-separable linear constraints. For the general case, when the objective function is smooth and non-convex, we prove for the non-accelerated variant sublinear rate in expectation for an appropriate optimality measure. In the smooth convex case, we derive for both algorithms, non-accelerated and A-RSD, sublinear convergence rates in the expected values of the objective function. Additionally, if the objective function satisfies a strong convexity type condition, both algorithms converge linearly in expectation. In special cases, where complexity bounds are known for some particular sketching algorithms, such as coordinate descent methods for optimization problems with a single linear coupled constraint, our theory recovers the best known bounds. Finally, we present several numerical examples to illustrate the performances of our new algorithms.


Sign in / Sign up

Export Citation Format

Share Document