Mathematical Programming
Latest Publications


TOTAL DOCUMENTS

4754
(FIVE YEARS 386)

H-INDEX

160
(FIVE YEARS 7)

Published By Springer-Verlag

1436-4646, 0025-5610

Author(s):  
Nikita Doikov ◽  
Yurii Nesterov

AbstractIn this paper, we develop new affine-invariant algorithms for solving composite convex minimization problems with bounded domain. We present a general framework of Contracting-Point methods, which solve at each iteration an auxiliary subproblem restricting the smooth part of the objective function onto contraction of the initial domain. This framework provides us with a systematic way for developing optimization methods of different order, endowed with the global complexity bounds. We show that using an appropriate affine-invariant smoothness condition, it is possible to implement one iteration of the Contracting-Point method by one step of the pure tensor method of degree $$p \ge 1$$ p ≥ 1 . The resulting global rate of convergence in functional residual is then $${\mathcal {O}}(1 / k^p)$$ O ( 1 / k p ) , where k is the iteration counter. It is important that all constants in our bounds are affine-invariant. For $$p = 1$$ p = 1 , our scheme recovers well-known Frank–Wolfe algorithm, providing it with a new interpretation by a general perspective of tensor methods. Finally, within our framework, we present efficient implementation and total complexity analysis of the inexact second-order scheme $$(p = 2)$$ ( p = 2 ) , called Contracting Newton method. It can be seen as a proper implementation of the trust-region idea. Preliminary numerical results confirm its good practical performance both in the number of iterations, and in computational time.


Author(s):  
Christian Füllner ◽  
Steffen Rebennack

AbstractWe propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations of the MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs are solved to global optimality using an enhancement of nested Benders decomposition, in which regularization, dynamically refined binary approximations of the state variables and Lagrangian cut techniques are combined to generate Lipschitz continuous non-convex approximations of the value functions. Those approximations are then used to decide whether the approximating MILP has to be dynamically refined and in order to compute feasible solutions for the original MINLP. We prove that NC-NBD converges to an $$\varepsilon $$ ε -optimal solution in a finite number of steps. We provide promising computational results for some unit commitment problems of moderate size.


Author(s):  
Manuel Aprile ◽  
Matthew Drescher ◽  
Samuel Fiorini ◽  
Tony Huynh

Author(s):  
Leon Eifler ◽  
Ambros Gleixner

AbstractThe last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, employs a faster rational LP solver based on LP iterative refinement, and is able to produce independently verifiable certificates of optimality. We study the significantly improved performance and give insights into the computational behavior of the new algorithmic components. On the MIPLIB 2017 benchmark set, we observe an average speedup of 10.7x over the original framework and 2.9 times as many instances solved within a time limit of two hours.


Author(s):  
Tito Homem-de-Mello ◽  
Miloš Kopa ◽  
David P. Morton

Sign in / Sign up

Export Citation Format

Share Document