scholarly journals Numerical studies using FDM for viscous dissipation and thermal radiation effects on the slip flow and heat transfer due to a stretching sheet embedded in a porous medium with variable thickness and variable thermal conductivity

2016 ◽  
Vol 4 (1) ◽  
pp. 38-38 ◽  
Author(s):  
Ali Eid ◽  
M. Mohamed Khader
2014 ◽  
Vol 18 (4) ◽  
pp. 1079-1093 ◽  
Author(s):  
V. Singh ◽  
Shweta Agarwal

An Analysis has been carried out to study the boundary layer flow and heat transfer characteristics of second order fluid and second grade fluid with variable thermal conductivity and radiation over an exponentially stretching sheet in porous medium. The basic boundary layer equations governing the flow and heat transfer in prescribed surface temperature (PST) and prescribed heat flux (PHF) cases are in the form of partial differential equations. These equations are converted to non-linear ordinary differential equations using similarity transformations. Numerical solutions of the resulting boundary value problem are solved by using the fourth order Runge-Kutta method with shooting technique for various values of the physical parameters. The effect of variable thermal conductivity, porosity, Prandtl number, radiation parameter and viscoelastic parameters on velocity and temperature profiles (in PST and PHF cases) are analyzed and discussed through graphs. Numerical values of wall temperature gradient in PST case and wall temperature in PHF case are obtained and tabulated for various values of the governing parameters. In this study Prandtl number also treated as variable inside the boundary layer because it depends on thermal conductivity. The results are also verified by using finite difference method.


2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 599-615 ◽  
Author(s):  
V. Singh ◽  
Shweta Agarwal

An analysis is made to study MHD flow and heat transfer for Maxwell fluid over an exponentially stretching sheet through a porous medium in the presence of non-uniform heat source/sink with variable thermal conductivity. The thermal conductivity is assumed to vary as a linear function of temperature. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations and then solved numerically using implicit finite difference scheme known as Keller-box method. The effect of the governing parameters on the flow field, skin friction coefficient, wall temperature gradient (in prescribed surface temperature case), wall temperature (in prescribed heat flux case) and Nusselt number are computed, analyzed and discussed through graphs and tables. The present results are found to be in excellent agreement with previously published work [1,2] on various special cases of the problem.


2016 ◽  
Vol 14 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Ahmed M. Megahed

AbstractIn this paper, we introduce a theoretical and numerical study for the effects of thermal buoyancy and constant heat flux on the Casson fluid flow and heat transfer over an exponentially stretching sheet taking into account the effects of variable thermal conductivity, heat generation/absorption and viscous dissipation. The governing partial differential equations are transformed into coupled, non-linear ordinary differential equations by using suitable transformations. Numerical solutions to these equations are obtained by using the fourth order Runge-Kutta method with the shooting technique. The effects of various physical parameters which governing the flow and heat treansfer such as the buoyancy parameter, the thermal conductivity parameter, heat generation or absorption parameter and the Prandtl number on velocity and temperature are discussed by using graphical approach. Moreover, numerical results indicate that the local skin-friction coefficient and the local Nusselt number are strongly affected by the constant heat flux.


Sign in / Sign up

Export Citation Format

Share Document