numerical studies
Recently Published Documents





2022 ◽  
Vol 388 ◽  
pp. 111602
Grant Garrett ◽  
Faith Beck ◽  
Douglas Miller ◽  
Brian Lowery ◽  
Fan-Bill Cheung ◽  

2022 ◽  
Vol 171 ◽  
pp. 108832
Hongdong Ran ◽  
Zhanpeng Chen ◽  
Yunmei Ma

2022 ◽  
Luis Ceferino ◽  
Ning Lin ◽  
Dazhi Xi

Solar generation can become a major and global source of clean energy by 2050. Nevertheless, few studies have assessed its resilience to extreme events, and none have used empirical data to characterize the fragility of solar panels. This paper develops fragility functions for rooftop and ground-mounted solar panels calibrated with solar panel structural performance data in the Caribbean for Hurricanes Irma and Maria in 2017 and Hurricane Dorian in 2019. After estimating hurricane wind fields, we follow a Bayesian approach to estimate fragility functions for rooftop and ground-mounted panels based on observations supplemented with existing numerical studies on solar panel vulnerability. Next, we apply the developed fragility functions to assess failure rates due to hurricane hazards in Miami-Dade, Florida, highlighting that panels perform below the code requirements, especially rooftop panels. We also illustrate that strength increases can improve the panels' structural performance effectively. However, strength increases by a factor of two still cannot meet the reliability stated in the code. Our results advocate reducing existing panel vulnerabilities to enhance resilience but also acknowledge that other strategies, e.g., using storage or deploying other generation sources, will likely be needed for energy security during storms.

2022 ◽  
Vol 10 (1) ◽  
pp. 106
Dongfang Liang ◽  
Jie Huang ◽  
Jingxin Zhang ◽  
Shujing Shi ◽  
Nichenggong Zhu ◽  

In the past few decades, there have been many numerical studies on the scour around offshore pipelines, most of which concern two-dimensional setups, with the pipeline infinitely long and the flow perpendicular to the pipeline. Based on the Ansys FLUENT flow solver, this study establishes a numerical tool to study the three-dimensional scour around pipelines of finite lengths. The user-defined functions are written to calculate the sediment transport rate, update the bed elevation, and adapt the computational mesh to the new boundary. The correctness of the model has been verified against the measurements of the conventional two-dimensional scour around a long pipe and the three-dimensional scour around a sphere. A series of computations are subsequently carried out to discover how the scour hole is dependent on the pipeline length. It is found that the equilibrium scour depth increases with the pipeline length until the pipeline length exceeds four times the pipe diameter.

Wei Liu ◽  
Fangni Zhang ◽  
Xiaolei Wang ◽  
Chaoyi Shao ◽  
Hai Yang

This study examines the pricing strategy of a parking sharing platform that rents the daytime-usage rights of private parking spaces from parking owners and sells them to parking users. In an urban area with both shared parking and curbside parking, a choice equilibrium model is proposed to predict the number of shared parking users under any given pricing strategy of the platform. We analytically analyze how the pricing strategy of the platform (price charged on users and rent paid to parking owners or sharers) would affect the parking choice equilibrium and several system efficiency metrics. It is shown that the platform is profitable when some parking owners have a relatively small inconvenience cost from sharing their spaces, but its profit is always negative at minimum social cost. Numerical studies are conducted to illustrate the analytical results and provide further understanding.

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 226
Alexander Musaev ◽  
Dmitry Grigoriev

The research presented in this article is dedicated to analyzing the acceptability of traditional techniques of statistical management decision-making in conditions of stochastic chaos. A corresponding example would be asset management at electronic capital markets. This formulation of the problem is typical for a large number of applications in which the managed object interacts with an unstable immersion environment. In particular, this issue arises in problems of managing gas-dynamic and hydrodynamic turbulent flows. We highlight the features of observation series of the managed object’s state immersed in an unstable interaction environment. The fundamental difference between observation series of chaotic processes and probabilistic descriptions of traditional models is demonstrated. We also present an additive observation model with a chaotic system component and non-stationary noise which provides the most adequate characterization of the original observation series. Furthermore, we suggest a method for numerically analyzing the efficiency of conventional statistical solutions in the conditions of stochastic chaos. Based on numerical experiments, we establish that techniques of optimal statistical synthesis do not allow for making effective management decisions in the conditions of stochastic chaos. Finally, we propose several versions of compositional algorithms focused on the adaptation of statistical techniques to the non-deterministic conditions caused by the specifics of chaotic processes.

Hazem Elbakry ◽  
Tarek Ebeido ◽  
El-Tony M. El-Tony ◽  
Momen Ali

Reinforced concrete columns consume large quantities of ties, especially inner cross-ties in columns with large dimensions. In some cases, nesting of the pillars occurs as a result of the presence of cross-ties. The main objective of this paper is to develop new methods for transverse reinforcement in RC columns and investigate their effect on the behavior of the columns. The proposed V-ties as transverse reinforcement replacing the ordinary and cross-ties details are economically feasible. They facilitate shorter construction periods and decrease materials and labor costs. For this purpose, experimental and numerical studies are carried out. In the experimental program, nine reinforced concrete columns with identical concrete dimensions and longitudinal reinforcing bars were prepared and tested under concentric axial load with different tie configurations. The main parameters were the tie configurations and the length (lv) of V-tie legs. As part of the numerical study, the finite element model using the ABAQUS software program obtained good agreement with the experimental results of specimens. A numerical parametric study was carried out to study the influence of concrete compressive strength and longitudinal reinforcement ratio on the behavior of RC columns with the considered tie configurations. Based on the experimental and numerical results, it was found that using V-tie techniques instead of traditional ties could increase the axial load capacity of columns, restrain early local buckling of the longitudinal reinforcing bars and improve the concrete core confinement of reinforced concrete columns.

2022 ◽  
Xiaoyong Lu ◽  
Lide Wang ◽  
Yunfei Li

Abstract The atomic selective multi-step photoionization process is a critical step in laser isotope separation. In this article, we have studied three-step photoionization processes with non-monochromatic laser fields theoretically based on the semi-classical theory. Firstly, three bandwidth models, including the chaotic field model, de-correlation model and phase diffusion model, are introduced into the density matrix equations. The numerical results are made comparisons comprehensively. The phase diffusion model is selected for further simulations in terms of the correspondence degree to physical practice. Subsequently, numerical calculations are carried out to identify the influences of systematic parameters, including laser parameters (Rabi frequencies, bandwidths, relative time delays, frequency detunings) and atomic Doppler broadening, on photoionization processes. In order to determine the optimum match between different systematic parameters, ionization yield of resonant isotope and selectivity factor are adopted as evaluation indexes to guide the design and optimization process. The results in this work can provide a rewarding reference for laser isotope separation.

Sign in / Sign up

Export Citation Format

Share Document