scholarly journals ALGORITMA UNTUK MENGKONSTRUKSI SUPER MATRIK SIMETRI FUZZY PERSEGI

2016 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
Hendra Kartika

The aim of this paper is to study the super matrix fuzzy using square symmetric properties of the matrix approach. Super fuzzy symmetry square matrix is constructed using the algorithm proposed by the author. The algorithm is derived from the concept of four square fuzzy submatrices. After that, the algorithm is translated into Matlab and repeatedly studied so that it meets super matrix symmetry properties. In this algorithm, Matlab is used to support the construction of super square fuzzy symmetry matrix with a very large order.

1977 ◽  
Vol 16 (3) ◽  
pp. 361-369
Author(s):  
M. Deza ◽  
Peter Eades

Necessary and sufficient conditions are given for a square matrix to te the matrix of distances of a circulant code. These conditions are used to obtain some inequalities for cyclic difference sets, and a necessary condition for the existence of circulant weighing matrices.


Author(s):  
Nizar Tahri

In this paper, we propose a novel generalized S-matrix characterization approach. The goal is to keep track of all observed discontinuities as efficiently as possible. In terms of reflection value, the proposed control strategy is based on transmission coefficients and one-axis rectangular guides. We successfully manipulate metal rectangular waveguide filters with both geometrical and physical discontinuity. Lossless discontinuity is depicted as a periodic structure that contains Metamaterials. The modal development of transverse fields provides the basis for the generalized S-matrix approach. The approach works by breaking down electromagnetic fields for each of the guides that make up the discontinuity on an orthonormal basis. When the Galerkin method is used, the matrix of diffraction of the junction is obtained directly.


2020 ◽  
Vol 498 (3) ◽  
pp. 3368-3373
Author(s):  
E V Polyachenko ◽  
I G Shukhman

ABSTRACT Using the canonical Hamilton–Jacobi approach we study the Lynden-Bell concept of bar formation based on the idea of orbital trapping parallel to the long or short axes of the oval potential distortion. The concept considered a single parameter – a sign of the derivative of the precession rate over angular momentum, determining the orientation of the trapped orbits. We derived a perturbation Hamiltonian that includes two more parameters characterizing the background disc and the perturbation, which are just as important as the earlier known one. This allows us to link the concept with the matrix approach in linear perturbation theory, the theory of weak bars, and explain some features of the non-linear secular evolution observed in N-body simulations.


Let c = ( c 1 , . . . , c r ) be a set of curves forming a minimum base on a surface, which, under a self-transformation, T , of the surface, transforms into a set T c expressible by the equivalences T c = Tc, where T is a square matrix of integers. Further, let the numbers of common points of pairs of the curves, c i , c j , be written as a symmetrical square matrix Г. Then the matrix T satisfies the equation TГT' = Г. The significance of solutions of this equation for a given matrix Г is discussed, and the following special surfaces are investigated: §§4-7. Surfaces, in particular quartic surfaces, wìth only two base curves. Self-transformations of these depend on the solutions of the Pell equation u 2 - kv 2 = 1 (or 4). §8. The quartic surface specialized only by being made to contain a twisted cubic curve. This surface has an involutory transformation determined by chords of the cubic, and has only one other rational curve on it, namely, the transform of the cubic. The appropriate Pell equation is u 2 - 17 v 2 = 4. §9. The quartic surface specialized only by being made to contain a line and a rational curve of order m to which the line is ( m - 1)⋅secant (for m = 1 the surface is made to contain two skew lines). The surface has two infinite sequences of self-transformations, expressible in terms of two transformations R and S , namely, a sequence of involutory transformations R S n , and a sequence of non-involutory transformations S n .


1959 ◽  
Vol 11 ◽  
pp. 269-279 ◽  
Author(s):  
N. S. Mendelsohn ◽  
A. L. Dulmage

The term rank p of a matrix is the order of the largest minor which has a non-zero term in the expansion of its determinant. In a recent paper (1), the authors made the following conjecture. If S is the sum of all the entries in a square matrix of non-negative real numbers and if M is the maximum row or column sum, then the term rank p of the matrix is greater than or equal to the least integer which is greater than or equal to S/M. A generalization of this conjecture is proved in § 2.The term doubly stochastic has been used to describe a matrix of nonnegative entries in which the row and column sums are all equal to one. In this paper, by a doubly stochastic matrix, the, authors mean a matrix of non-negative entries in which the row and column sums are all equal to the same real number T.


1973 ◽  
Vol 95 (3) ◽  
pp. 744-750 ◽  
Author(s):  
S. Hamid ◽  
A. H. Soni

Using the matrix approach, synthesis equations are derived for eight types of synthesis problems for an eight-link mechanism having five links in each of its three loops. A numerical approach due to Marquardt is applied to illustrate the synthesis technique for the varieties of motion programs.


1967 ◽  
Vol 63 (4) ◽  
pp. 1125-1134 ◽  
Author(s):  
Hazel Perfect

We recall that a square matrix (finite or infinite) with non-negative elements and with each row-sum and column-sum equal to 1 is called doubly-stochastic (d.s.). If each row-sum and column-sum of a non-negative square matrix is less than or equal to 1, the matrix is called doubly-substochastic (d.s.s.).


Sign in / Sign up

Export Citation Format

Share Document