Design of Solar Enhanced Natural Draft Dry Cooling Tower for Solar Thermal Power Plants

Author(s):  
Z. Guan ◽  
H. Gurgenci ◽  
Z. Zou
2017 ◽  
Vol 206 ◽  
pp. 1169-1183 ◽  
Author(s):  
Xiaoxiao Li ◽  
Hal Gurgenci ◽  
Zhiqiang Guan ◽  
Xurong Wang ◽  
Sam Duniam

2017 ◽  
Vol 2 (2) ◽  
pp. 18
Author(s):  
Taqiy Eddine Boukelia

Most of Concentrating Solar Power (CSP) plants are usually installed in desert regions where water resource availability is a critical limitation due to the lack of water required for the exploitation of these systems in these regions. Therefore, the aim of this study is to investigate the techno-economic competitiveness of deploying both modes of cooling (wet and dry) in two different parabolic trough solar thermal power plants integrated with thermal energy storage and fuel backup system; the first one is using thermic oil, while the other is working using molten salt. The obtained results show that the dry cooling mode can decrease the yields of the two power plants down to 8.7 % and 9.3 % for oil and salt configurations respectively. On the other hand, the levelized cost of electricity can increase by using this cooling option up to 9.3 % for oil plant, and 10.0 % for salt one. However, the main advantage of using dry cooling option is reducing water consumption which has been decreased by more than 94 % for both plants. The application of our methodology to other two sites worldwide, confirms the viability of the obtained results. The importance of this results is to show the effect of working fluids on the cooling system of solar power plants.


Author(s):  
Jaya Goswami

The purpose of this study is to evaluate the performance metrics of a solar thermal power plant with dry cooling and further implement a method to increase the cycle efficiency, using passive cooling techniques within the dry cooling cycle. Current methods implementing dry cooled condensation use an air-cooled condenser for heat rejection. While this reduces the water consumption of the plant, it results in performance penalties in the overall plant between 5–10% [1]. Passive cooling methods can be used to alleviate the performance penalties. While passive cooling methods have been studied and used on a small scale, this model explores the possibilities of applying these methods to large-scale solar thermal power plants. Based on the model developed, it was found that underground-cooling techniques can improve the performance of the overall dry cooled solar thermal power plant by up to 3% at peak dry bulb temperatures. This study finds that there is a possibility to apply these passive cooling techniques on a large scale to yield positive results.


2011 ◽  
Vol 133 (04) ◽  
pp. 42-43 ◽  
Author(s):  
Louis Michaud ◽  
Nilton Renno

This article discusses building a prototype of an atmospheric vortex engine (AVE) to increase the thermodynamic efficiency of a thermal plant. An AVE would look like a natural draft cooling tower with a controlled vortex emerging from its open top. An AVE tower could have a diameter of 300 feet and stand 10 to 20 stories tall. To fully demonstrate the AVE concept, however, it is likely necessary to build and test a prototype at an existing thermal power plant. Building the prototypes at existing thermal power plants would be advantageous because of the availability of a controlled heat source of relatively high temperature. Possessing some 20% or 30% of the capacity of the existing cooling tower, the prototype would be able to accept a fraction of the waste heat from the plant. A small gas-fired power plant in a rural location with a dry cooling tower would be a good candidate site for an AVE prototype, since it could be developed without risk to existing plant operation.


Sign in / Sign up

Export Citation Format

Share Document