central receiver
Recently Published Documents


TOTAL DOCUMENTS

616
(FIVE YEARS 51)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Vol 2139 (1) ◽  
pp. 012012
Author(s):  
F Moreno-Gamboa ◽  
J C Acevedo-Paéz ◽  
D Sanin-Villa

Abstract A thermodynamic analysis of a hybrid gas turbine solar plant, represented in three basic subsystems related to the power cycle, the combustion chamber subsystem, and the solar concentrator subsystem, allows evaluating the performance of a hybrid cycle from a reduced number of parameters, which include energy losses in each of its components. The solar radiation values are estimated with an evaluated and validated theoretical model, the combustion chamber uses natural gas as fuel and the numerical values of the system are taken from the Solugas experimental plant in Spain. This work presents an integrated model that allows to estimate the operation of a hybrid solar Brayton power plant in any place and day of the year. The evaluation of the plant in Barranquilla, Colombia is shown from the influence of the regenerator has on the plant performance and solar concentrating system. The results show that the regenerator can increase the overall efficiency of the plant by 29% and allows reaching a maximum temperature of the central receiver of the concentrator of 1044 K at noon, when solar radiation is maximum.


2021 ◽  
Vol 180 ◽  
pp. 55-67
Author(s):  
N. Speetzen ◽  
P. Richter
Keyword(s):  

2021 ◽  
Vol 231 ◽  
pp. 111317
Author(s):  
M. Laporte-Azcué ◽  
P.A. González-Gómez ◽  
M.R. Rodríguez-Sánchez ◽  
D. Santana

2021 ◽  
Vol 2073 (1) ◽  
pp. 012012
Author(s):  
F Moreno-Gamboa ◽  
E Vera-Duarte ◽  
G Guerrero-Gómez

Abstract This work presents the evolution of the operation of a regenerative hybrid solar gas turbine in an average day of the year. The system is evaluated by means of a thermodynamic model that includes a solar concentrated heliostat field solar concentrator with central receiver, a combustion chamber, and the thermal engine. The model is applied in Barranquilla, Colombia using local temperature and the solar radiation estimated with a theoretical model. Power output, the global efficiency and thermal engine efficiency are estimated. Additionally, to estimate the temperatures in different states of the cycle with and without regenerator. Finally, the impact of the regenerator is evaluated, which can increase the temperature of the solar receiver by up to 13.6%, and the inlet temperature to the combustion chamber increases by 17.3% at noon, when solar radiation is maximum.


Author(s):  
Shakir Shakoor Khatti ◽  
Sheldon Jeter ◽  
Hany Al-Ansary

Abstract Due to increasing energy demand around the globe and potential environmental impacts of fossil fuels, it has become a crucial task for researchers to find alternatives to generate electricity from low-carbon resources at lower costs. Three types of advanced CSP are under consideration: systems heating salt, gas, or particulate. Particle heating receiver (PHR) based central receiver power tower CSP is an emerging technology that promises higher operating temperatures and more cost-effective thermal energy storage (TES) than feasible with existing or alternative CSP systems. For reasons stated above and others, we propose that the particle heating receiver (PHR) based CSP in the classic central receiver power tower (CRPT) configuration will be the most suitable especially in the promising Middle East and North Africa (MENA) region. Specifically, Duba, Al Wajih, and Wa’ad Al-Shamaal regions in Saudi Arabia have high direct normal irradiation (DNI) and represent potential locations. PHR based CSP power tower plant consists of a central receiver power tower with TES and cavity receiver, heliost at field, a high-temperature solar gas turbine with built-in fuel backup to operate in hybrid mode (using both fuel and solar-thermal resources). This study focuses on the optimization of a solar heat supply system (SHSS), consisting of a tower, cavity receiver, and heliostat field. SolarPILOT – Solar Power tower Integrated Layout and Optimization Tool is a field layout optimization tool developed by National Renewable Energy Laboratory (NREL). SolarPILOT is used in this study to generate the field layout of a 1.3 MWe power plant with a solar multiple (SM) of 2, 3, and 4. Cost models for the tower, receiver, and heliostats are developed using the data from research programs, contractors, manufacturing companies, and general cost engineering data and tools. System Advisor Model (SAM) is further used to simulate the annual performance of CSP tower plant including power block (high-temperature gas turbine) and TES using optical efficiency data from SolarPILOT to optimize PHR-based CSP tower plant. The results of this research are fundamental to the techno-economic analysis (TEA) of this and similar smaller-scale systems and will support the TEA of larger grid-connected and smaller off-grid systems operating independently or in conjunction with PV systems.


Author(s):  
R. Pérez-Álvarez ◽  
P.A. González-Gómez ◽  
A. Acosta-Iborra ◽  
D. Santana

Solar Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 296-311
Author(s):  
Arslan A. Rizvi ◽  
Syed N. Danish ◽  
Abdelrahman El-Leathy ◽  
Hany Al-Ansary ◽  
Dong Yang

Sign in / Sign up

Export Citation Format

Share Document