International Journal of Energetica
Latest Publications


TOTAL DOCUMENTS

65
(FIVE YEARS 38)

H-INDEX

3
(FIVE YEARS 1)

Published By The Scientific Club Of Al Manahil Association

2543-3717

2020 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
Ghodbane Mokhtar

Air conditioning is one of the indispensable conditions of well-being in human life, so the face of this research to provide this basic necessity in remote areas and in desert places far from power grids. To achieve this goal, solar air conditioning has been adopted, where the compressor was replaced by an ejector, a parabolic trough solar collector and a small pump; this means that the solar air conditioner does not need a huge amount of electrical energy to operate. This paper is studding the thermodynamic cycles of this air conditioner as a function of changing the climatic conditions of Bouzaréah region in Algeria under several practical conditions of heat exchangers (Condenser, Evaporator and Generator). This study will allow the determination of the optical and thermal efficiency of the solar collector used as a solar thermal generator, refrigeration subsystem performance (COPEje) and system thermal ratio of the air conditioner, where the cooling load is estimated at 18 kW.


2020 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Abdelkader Hima

Solar cells based on organic-inorganic perovskites (PVK) are the subject of several researches in laboratories around the world. One of the most promising hybrid perovskite is the methylammonium lead tri-iodide MAPbI3 that is suitable for sun light harvesting. But the MAPbI3 is a toxic material, so in this paper is proposed another nature friendly candidate which is the methylammonium tin tri-iodide MASnI3. The proposed material is inserted into an n-i-p heterojunction solar cell which structure is electron transport layer (ETL)/PVK/hole transport layer (HTL). The used HTL is the PEDOT: PSS in combination with one of two ETLs which are the PCBM and the IGZO. Simulation efforts using 1D SCAPS was carried. It is found that IGZO ETL based solar cell yields a higher power conversion efficiency (PCE) compared with PCBM ETL based solar cell in the same thickness.   


2020 ◽  
Vol 5 (1) ◽  
pp. 22
Author(s):  
Abdessamia Hadjadj

Thermal performance for cooling and heating in the building can be achieved by the novel shape of the earth–air heat exchanger (EAHE). In a heavily populated area such as City, Due to the limited ground space. EAHE systems are rarely used, for most residential andcommercial utilization.This paper presents a numerical investigation of the thermal performance of a spiral-shaped configuration Spiral Earth to Air Heat Exchanger SEAHE intended for the summer cooling inhot and arid regions of Algeria. A parametric analysis of the SEAHE has been performed toinvestigate the effect of diameter, depth, pipe length and of airflow rate on the outlet air in theexchanger. Results show that the specific heat exchange is used to cool in an arid zone (south-east of Algeria). When the ambient temperature varies between 40°C and 45 °C, the coolingtemperature varies between 25°C and 29 °C. Temperature difference inlet and outlet airexchanger 18°C, these values are quite acceptable with for cooling the building.


2020 ◽  
Vol 5 (1) ◽  
pp. 30
Author(s):  
Ali Sadoun

In this work, we have presented a theoretical study of  Au/InSb/InP Schottky diode based on current-voltage (I-V) measurement in the temperature range ( 300 K- 425 K). Electrical parameters of Au/InSb/InP such as barrier height (Φb), ideality factor and series resistance have been calculated by employing the conventional (I-V), Norde, Cheung and Chattopadhyay methods. Measurements show that the Schottky barrier height (SBH), ideality factor and series resistance, RS for Au/InSb/InP Schottky diode in the temperature range (300 K–425 K)  are 0.602-0.69eV, 1.683-1.234 and 84.54-18.95 (Ω), respectively. These parameters were extracted using Atlas-Silvaco-Tcad logical.


2020 ◽  
Vol 5 (1) ◽  
pp. 37
Author(s):  
Ridha Cherraye

Single basin solar still (SBSS) has low productivity in this experimental research, some techniques have been employed to solve this problem, these techniques consist of using a flat plate collector. The main aim of this research was to make efficient use of the flat plate collector (FPC) to increase solar still productivity, and it works as a hybrid device. The model solar water heater for the flat plat collector (FPC) was coupled with a solar still, and the tests were repeated in 3 to 5 winter days, and the results were measured in the same way for each day. The results revealed that the productivity of the still increased 87 % when coupled with one, and decreased 20 % and 50 % when coupled with two and three flat plate collectors in southern Algeria, respectively.


2020 ◽  
Vol 5 (1) ◽  
pp. 07
Author(s):  
Razik Benderradji

The flow in an Over-Expanded Nozzle is subjected to shock waves leading to the unsteady separation of the boundary layer. Free detachment may be followed by a restricted detachment. During the expansion regime in propellant nozzles, several physical phenomena are encountered: supersonic jet, jet separation, adverse pressure gradient, shock wave, turbulent boundary layer, highly compressible mixture layer, return flow, large scale turbulence. These very complex phenomena can considerably affect the performance of the nozzle.The numerical investigation was performed by the CFD-FASTRAN search code, using the k-w SST model as the turbulence model. The calculation is performed by solving the Navier-Stokes equations of two-dimensional compressible turbulent flow. It is based on the study of the fluidic vectorization phenomenon of the thrust of a double-injection convergent-divergent supersonic conical nozzle. The study is based on the effect of the ratio of NPR pressures with SPR = 1 on the overall structure of shock waves. The calculation is highlighting the behavior of a flow that has not neglected. In particular, the appearance of the separation zone formed by the fluid jet and the deflection of the main jet cause separation shocks.


2020 ◽  
Vol 5 (1) ◽  
pp. 01
Author(s):  
Zaid Alhusban

A new method is introduced by using high precision accelerometer and gyroscope micro-electromechanical sensors (MEMS), which can record Lagrangian observations of sediments and shed light into the dynamics of sediment transport processes at above threshold conditions. The sensor can be used under a range of well-controlled flow conditions and can record measurements at high frequency (200 Hz), which can be used at the field. The smart sphere performance was evaluated by comparing its rotation and acceleration readings from the sensors to the video recordings of both top and underwater high-speed camera for a range of flow rates and sphere densities. Furthermore, an initial attempt to compare the smart-sphere’s velocity is achieved, by transforming the particle’s velocity from the Lagrangian frame of reference, obtained from the inertial sensor, to its velocity at the Eularian frame, obtained from the top camera.


2020 ◽  
Vol 4 (2) ◽  
pp. 21
Author(s):  
Ahmed Remlaoui ◽  
Hammou Soumia, Bent Abdelkader Nafissa .

This article deals with the desalination of seawater and brackish water, which can deal with the problem of water scarcity that threatens certain countries in the world; it is now possible to meet the demand for drinking water.  Currently,  among  the  various  desalination  processes,  the  reverse  osmosis  technique  is  the  most  used. Electrical energy consumption is the most attractive factor in the cost of operating seawater by reverse osmosis in desalination plants.  Desalination  of  water by  solar  energy  can be  considered  as a  very  important  drinking  water alternative.  For  determining  the  electrical  energy  consumption  of  a  single  reverse  osmosis  module,  we  used  the  System  Advisor  Model  (SAM)  to  determine  the  technical  characteristics  and  costs  of  a  parabolic  cylindrical installation and Reverse Osmosis System Analysis (ROSA) to obtain the electrical power of a single reverse osmosis module. The electrical power of a single module is 4101 KW; this is consistent with the manufacturer's data that this power must be between 3900 kW and 4300 KW. Thus, the energy consumption of the system is 4.92 KWh/m3.Thermal power produced by the solar cylindro-parabolic field during the month of May has the maximum that is 208MWth, and the minimum value during the month of April, which equals 6 MWth. Electrical power produced by the plant varied between 47MWe, and 23.8MWe. The maximum energy was generated during the month of July (1900 MWh) with the maximum energy stored (118 MWh).


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Djamel Benmenine ◽  
Mokhtar Ghodbane

This study aims to conduct an experimental thermal examination of a parabolic trough collector in Ouargla region at Algeria, which will be used as a solar water heater. The solar collector was manufactured and then experimentally tested, as its theoretical optical performance was estimated at 75.06%, while the values of its true thermal performance are 10.61, 10.68 and 8.85 % for 13 May, 14 May and 15 May. Although its thermal performance is somewhat low, the studied PTC is effective in heating the water, whereas, using a volumetric flow of 0.011 l/s, about 317 liters of water can be heated daily at 42°C, knowing that the daily average consumption of hot water in a typical house is 250 liters because the Ouargla region is strategically located that receives huge amounts of solar irradiance


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Alya Chairunnisa ◽  
Asep Bayu Dani Nandiyanto

The aim of this study is to evaluate the economic and engineering layout carried out on a factory scale LiFePO4 production using the hydrothermal synthesis method. The method used is economic evaluation by calculating gross profit margin (GPM), payback period (PBP), break-even point (BEP), internal rate return (IRR), cumulative net present value (CNPV), return on investment (ROI). , and the profitability index (PI). LiFePO4 was synthesized using precursors FeSO4.H2O, ascorbic acid and H3PO4 and then reacted with LiOH2.2H2O by maintaining the Li: Fe: P molar ratio of 3: 1: 1. The results of GPM and CNPV calculations from the manufacture of industrial scale LiFePO4 show that the payback period (PBP) has increased in the fourth year. LiFePO4 applications on an industrial scale can be used for lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document