scholarly journals Proton Transfer Mechanisms in Bimetallic Hydrogenases

Author(s):  
Hulin Tai ◽  
Shun Hirota ◽  
Sven T. Stripp

Hydrogenases are iron-sulfur enzymes that catalyze proton reduction and H2 oxidation with outstanding efficiency. They are considered blueprints for the design of transition metal complexes, e.g. as heterogenous catalysts in the context of H2 production from water. Moreover, hydrogenases are biological model systems for metal hydride chemistry and proton-coupled electron transfer. Depending on the composition of the active site cofactor, [NiFe]-hydrogenases are distinguished from [FeFe]-hydrogenases. The former binds a hetero bimetallic nickel/iron site, embedded in the protein by four cysteine ligands. The later, by contrast, carries a homo bimetallic iron/iron site attached to the protein by only a single cysteine. Carbon monoxide and cyanide ligands (CO/CN) at the active site facilitated detailed investigations of hydrogenase catalysis by infrared spectroscopy, owing to strong signals and redox-dependent frequency shifts. However, the details of proton transfer have not been addressed experimentally.We found that specific redox state transitions in [NiFe]- and [FeFe]-hydrogenase can be triggered by visible light to record extremely sensitive ‘light-minus-dark’ infrared difference spectra monitoring key amino acid residues as shown in the ToC figure. As these transitions are coupled to protonation changes, our data allowed investigating dynamic hydrogen-bonding changes that go well beyond the resolution of protein crystallography. In [NiFe]-hydrogenase, photolysis of the bridging hydride ligand in the ‘Ni-C’ state was followed by rapid accumulation of the ‘Ni-SIa’ state and/or ‘Ni-L’ state. Infrared difference spectra in various isotopic media clearly indicated the formation of a protonated cysteine residue as well as hydrogen-bonding changes involving the COOH group of a glutamic acid residue and a ‘dangling water’ molecule. These findings are in excellent agreement with crystallographic analyses of [NiFe]-hydrogenase in the Ni-R state and allowed devising a molecular precise model of catalytic proton transfer. In [FeFe]-hydrogenase, an external redox dye was used to accumulate the ‘Hred’ state over the oxidized resting state ‘Hox’. Infrared difference spectra of wild-type enzyme and numerous amino acid variants indicated hydrogen-bonding changes involving the COOH groups of two glutamic acid residues. Moreover, we noted the deprotonation of an arginine residue. Crystallographic analyses of [FeFe]-hydrogenase in the Hox state failed to explain the rapid proton transfer due to a ‘breach’ in the succession of residues. To this end, our findings facilitated a molecular precise model of ‘discontinued’ proton transfer.The comparison of catalytic proton transfer in bimetallic hydrogenases emphasizes the role of the outer coordination sphere. We suggest that the stable protonation of a nickel-ligating cysteine in [NiFe]-hydrogenase has a crucial influence on the preferred direction of proton flow and catalysis (i.e., H2 oxidation). On the contrary, proton transfer in [FeFe]-hydrogenase involves an adjacent cysteine as a relay group that promotes both proton release and proton uptake. We presume that this causes the notable bidirectionality of [FeFe]-hydrogenase. These observations must guide the design of biomimetic compounds for the production or consumption of H2.

2013 ◽  
Vol 12 (08) ◽  
pp. 1341002 ◽  
Author(s):  
XIN ZHANG ◽  
MING LEI

The deamination process of isoxanthopterin catalyzed by isoxanthopterin deaminase was determined using the combined QM(PM3)/MM molecular dynamics simulations. In this paper, the updated PM3 parameters were employed for zinc ions and the initial model was built up based on the crystal structure. Proton transfer and following steps have been investigated in two paths: Asp336 and His285 serve as the proton shuttle, respectively. Our simulations showed that His285 is more effective than Aap336 in proton transfer for deamination of isoxanthopterin. As hydrogen bonds between the substrate and surrounding residues play a key role in nucleophilic attack, we suggested mutating Thr195 to glutamic acid, which could enhance the hydrogen bonds and help isoxanthopterin get close to the active site. The simulations which change the substrate to pterin 6-carboxylate also performed for comparison. Our results provide reference for understanding of the mechanism of deaminase and for enhancing the deamination rate of isoxanthopterin deaminase.


2019 ◽  
Author(s):  
Jifu Duan ◽  
Stefan Mebs ◽  
Moritz Senger ◽  
Konstantin Laun ◽  
Florian Wittkamp ◽  
...  

The H2 conversion and CO inhibition reactivity of nine [FeFe]-hydrogenase constructs with semi-artificial cofactors was studied by in situ and time-resolved infrared spectroscopy, X-ray crystallography, and theoretical methods. Impaired hydrogen turnover and proton transfer as well as characteristic CO inhibition/ reactivation kinetics are assigned to varying degrees of hydrogen-bonding interactions at the active site. We show that the probability to adopt catalytic intermediates is modulated by intramolecular and protein-cofactor interactions that govern structural dynamics at the active site of [FeFe]-hydrogenases.<br>


2020 ◽  
Author(s):  
Konstantin Laun ◽  
Iuliia Baranova ◽  
Jifu Duan ◽  
Leonie Kertess ◽  
Florian Wittkamp ◽  
...  

Hydrogenases are microbial redox enzymes that catalyze H2 oxidation and proton reduction (H2 evolution). While all hydrogenases show high oxidation activities, the majority of [FeFe]-hydrogenases are excellent H2 evolution catalysts as well. Their active site cofactor comprises a [4Fe-4S] cluster covalently linked to a diiron site equipped with carbon monoxide and cyanide ligands that facilitate catalysis at low overpotential. Distinct proton transfer pathways connect the active site niche with the solvent, resulting in a non-trivial dependence of hydrogen turnover and bulk pH. To analyze the catalytic mechanism of [FeFe]-hydrogenase, we employ in situ infrared spectroscopy and infrared spectro-electrochemistry. Titrating the pH under H2 oxidation or H2 evolution conditions reveals the influence of site-selective protonation on the equilibrium of reduced cofactor states. Governed by pKa differences across the active site niche and proton transfer pathways, we find that individual electrons are stabilized either at the [4Fe-4S] cluster (alkaline pH values) or at the diiron site (acidic pH values). This observation is discussed in the context of the natural pH dependence of hydrogen turnover as catalyzed by [FeFe]-hydrogenase.<br>


2019 ◽  
Author(s):  
Moritz Senger ◽  
Viktor Eichmann ◽  
Konstantin Laun ◽  
Jifu Duan ◽  
Florian Wittkamp ◽  
...  

Hydrogenases are metalloenzymes that catalyse the interconversion of protons and molecular hydrogen, H2. [FeFe]-hydrogenases show particularly high rates of hydrogen turnover and have inspired numerous compounds for biomimetic H2 production. Two decades of research on the active site cofactor of [FeFe]-hydrogenases have put forward multiple models of the catalytic proceedings. In comparison, understanding of the catalytic proton transfer is poor. We were able to identify the amino acid residues forming a proton transfer pathway between active site cofactor and bulk solvent; however, the exact mechanism of catalytic proton transfer remained inconclusive. Here, we employ in situ IR difference spectroscopy on the [FeFe]-hydrogenase from Chlamydomonas reinhardtii evaluating dynamic changes in the hydrogen-bonding network upon catalytic proton transfer. Our analysis allows for a direct, molecular unique assignment to individual amino acid residues. We found that transient protonation changes of arginine and glutamic acid residues facilitate bidirectional proton transfer in [FeFe]-hydrogenases.<br>


2019 ◽  
Author(s):  
Jifu Duan ◽  
Stefan Mebs ◽  
Moritz Senger ◽  
Konstantin Laun ◽  
Florian Wittkamp ◽  
...  

The H2 conversion and CO inhibition reactivity of nine [FeFe]-hydrogenase constructs with semi-artificial cofactors was studied by in situ and time-resolved infrared spectroscopy, X-ray crystallography, and theoretical methods. Impaired hydrogen turnover and proton transfer as well as characteristic CO inhibition/ reactivation kinetics are assigned to varying degrees of hydrogen-bonding interactions at the active site. We show that the probability to adopt catalytic intermediates is modulated by intramolecular and protein-cofactor interactions that govern structural dynamics at the active site of [FeFe]-hydrogenases.<br>


2017 ◽  
Vol 19 (5) ◽  
pp. 4030-4040 ◽  
Author(s):  
Luca Grisanti ◽  
Dorothea Pinotsi ◽  
Ralph Gebauer ◽  
Gabriele S. Kaminski Schierle ◽  
Ali A. Hassanali

Different types of hydrogen bonding interactions that occur in amyloids model systems and molecular factors that control the susceptibility of the protons to undergo proton transfer and how this couples to the optical properties.


ACS Catalysis ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 9140-9149 ◽  
Author(s):  
Jifu Duan ◽  
Stefan Mebs ◽  
Konstantin Laun ◽  
Florian Wittkamp ◽  
Joachim Heberle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document