scholarly journals An Improved Fully Convolutional Network Based on Post-Processing with Global Variance Equalization and Noise-Aware Training for Speech Enhancement

Author(s):  
Wenlong Li ◽  
◽  
Kaoru Hirota ◽  
Yaping Dai ◽  
Zhiyang Jia

An improved fully convolutional network based on post-processing with global variance (GV) equalization and noise-aware training (PN-FCN) for speech enhancement model is proposed. It aims at reducing the complexity of the speech improvement system, and it solves overly smooth speech signal spectrogram problem and poor generalization capability. The PN-FCN is fed with the noisy speech samples augmented with an estimate of the noise. In this way, the PN-FCN uses additional online noise information to better predict the clean speech. Besides, PN-FCN uses the global variance information, which improve the subjective score in a voice conversion task. Finally, the proposed framework adopts FCN, and the number of parameters is one-seventh of deep neural network (DNN). Results of experiments on the Valentini-Botinhaos dataset demonstrate that the proposed framework achieves improvements in both denoising effect and model training speed.

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 264
Author(s):  
Kaisa Liimatainen ◽  
Riku Huttunen ◽  
Leena Latonen ◽  
Pekka Ruusuvuori

Identifying localization of proteins and their specific subpopulations associated with certain cellular compartments is crucial for understanding protein function and interactions with other macromolecules. Fluorescence microscopy is a powerful method to assess protein localizations, with increasing demand of automated high throughput analysis methods to supplement the technical advancements in high throughput imaging. Here, we study the applicability of deep neural network-based artificial intelligence in classification of protein localization in 13 cellular subcompartments. We use deep learning-based on convolutional neural network and fully convolutional network with similar architectures for the classification task, aiming at achieving accurate classification, but importantly, also comparison of the networks. Our results show that both types of convolutional neural networks perform well in protein localization classification tasks for major cellular organelles. Yet, in this study, the fully convolutional network outperforms the convolutional neural network in classification of images with multiple simultaneous protein localizations. We find that the fully convolutional network, using output visualizing the identified localizations, is a very useful tool for systematic protein localization assessment.


Author(s):  
Nayere Zaghari ◽  
Mahmood Fathy ◽  
Seyed Mahdi Jameii ◽  
Mohammad Sabokrou ◽  
Mohammad Shahverdy

Considering the significant advancements in autonomous vehicle technology, research in this field is of interest to researchers. To drive vehicles autonomously, controlling steer angle, gas hatch, and brakes need to be learned. The behavioral cloning method is used to imitate humans’ driving behavior. We created a dataset of driving in different routes and conditions and using the designed model, the output used for controlling the vehicle is obtained. In this paper, the Learning of Self-driving Vehicles Based on Real Driving Behavior Using Deep Neural Network Techniques (LSV-DNN) is proposed. We designed a convolutional network which uses the real driving data obtained through the vehicle’s camera and computer. The response of the driver is during driving is recorded in different situations and by converting the real driver’s driving video to images and transferring the data to an excel file, obstacle detection is carried out with the best accuracy and speed using the Yolo algorithm version 3. This way, the network learns the response of the driver to obstacles in different locations and the network is trained with the Yolo algorithm version 3 and the output of obstacle detection. Then, it outputs the steer angle and amount of brake, gas, and vehicle acceleration. The LSV-DNN is evaluated here via extensive simulations carried out in Python and TensorFlow environment. We evaluated the network error using the loss function. By comparing other methods which were conducted on the simulator’s data, we obtained good performance results for the designed network on the data from KITTI benchmark, the data collected using a private vehicle, and the data we collected.


2019 ◽  
Vol 37 (4) ◽  
pp. 5187-5201 ◽  
Author(s):  
Nasir Saleem ◽  
Muhammad Irfan Khattak ◽  
Abdul Baser Qazi

Sign in / Sign up

Export Citation Format

Share Document