scholarly journals Poisson and symplectic reductions of 4–DOF isotropic oscillators. The van der Waals system as benchmark

2016 ◽  
Vol 1 (2) ◽  
pp. 473-492 ◽  
Author(s):  
F. Crespo ◽  
G. Díaz-Toca ◽  
S. Ferrer ◽  
M. Lara

AbstractThis paper is devoted to studying Hamiltonian oscillators in 1:1:1:1 resonance with symmetries, which include several models of perturbed Keplerian systems. Normal forms are computed in Poisson and symplectic formalisms, by mean of invariants and Lie-transforms respectively. The first procedure relies on the quadratic invariants associated to the symmetries, and is carried out using Gröner bases. In the symplectic approach, hinging on the maximally superintegrable character of the isotropic oscillator, the normal form is computed a la Delaunay, using a generalization of those variables for 4-DOF systems. Due to the symmetries of the system, isolated as well as circles of stationary points and invariant tori should be expected. These solutions manifest themselves rather differently in both approaches, due to the constraints among the invariants versus the singularities associated to the Delaunay chart.Taking the generalized van der Waals family as a benchmark, the explicit expression of the Delaunay normalized Hamiltonian up to the second order is presented, showing that it may be extended to higher orders in a straightforward way. The search for the relative equilibria is used for comparison of their main features of both treatments. The pros and cons are given in detail for some values of the parameter and the integrals.

2021 ◽  
pp. 1-27
Author(s):  
LUCA ASSELLE ◽  
GABRIELE BENEDETTI

Abstract We prove a normal form for strong magnetic fields on a closed, oriented surface and use it to derive two dynamical results for the associated flow. First, we show the existence of invariant tori and trapping regions provided a natural non-resonance condition holds. Second, we prove that the flow cannot be Zoll unless (i) the Riemannian metric has constant curvature and the magnetic function is constant, or (ii) the magnetic function vanishes and the metric is Zoll. We complement the second result by exhibiting an exotic magnetic field on a flat two-torus yielding a Zoll flow for arbitrarily weak rescalings.


Author(s):  
N.I. Gdansky ◽  
◽  
A.A. Denisov ◽  

The article explores the satisfiability of conjunctive normal forms used in modeling systems.The problems of CNF preprocessing are considered.The analysis of particular methods for reducing this formulas, which have polynomial input complexity is given.


Author(s):  
Krzysztof Tchoń ◽  
Katarzyna Zadarnowska

AbstractWe examine applicability of normal forms of non-holonomic robotic systems to the problem of motion planning. A case study is analyzed of a planar, free-floating space robot consisting of a mobile base equipped with an on-board manipulator. It is assumed that during the robot’s motion its conserved angular momentum is zero. The motion planning problem is first solved at velocity level, and then torques at the joints are found as a solution of an inverse dynamics problem. A novelty of this paper lies in using the chained normal form of the robot’s dynamics and corresponding feedback transformations for motion planning at the velocity level. Two basic cases are studied, depending on the position of mounting point of the on-board manipulator. Comprehensive computational results are presented, and compared with the results provided by the Endogenous Configuration Space Approach. Advantages and limitations of applying normal forms for robot motion planning are discussed.


Author(s):  
VLADIK KREINOVICH ◽  
HUNG T. NGUYEN ◽  
DAVID A. SPRECHER

This paper addresses mathematical aspects of fuzzy logic. The main results obtained in this paper are: 1. the introduction of a concept of normal form in fuzzy logic using hedges; 2. using Kolmogorov’s theorem, we prove that all logical operations in fuzzy logic have normal forms; 3. for min-max operators, we obtain an approximation result similar to the universal approximation property of neural networks.


2018 ◽  
Vol 10 (1) ◽  
pp. 179-184
Author(s):  
A.M. Romaniv

For non-singular matrices with some restrictions, we establish the relationships between Smith normal forms and transforming matrices (a invertible matrices that transform the matrix to its Smith normal form) of two matrices with corresponding matrices of their least common right multiple over a commutative principal ideal domains. Thus, for such a class of matrices, given answer to the well-known task of M. Newman. Moreover, for such matrices, received a new method for finding their least common right multiple which is based on the search for its Smith normal form and transforming matrices.


2002 ◽  
Vol 180 (2) ◽  
pp. 471-519 ◽  
Author(s):  
Jesús Palacián

2011 ◽  
Vol 76 (3) ◽  
pp. 807-826 ◽  
Author(s):  
Barry Jay ◽  
Thomas Given-Wilson

AbstractTraditional combinatory logic uses combinators S and K to represent all Turing-computable functions on natural numbers, but there are Turing-computable functions on the combinators themselves that cannot be so represented, because they access internal structure in ways that S and K cannot. Much of this expressive power is captured by adding a factorisation combinator F. The resulting SF-calculus is structure complete, in that it supports all pattern-matching functions whose patterns are in normal form, including a function that decides structural equality of arbitrary normal forms. A general characterisation of the structure complete, confluent combinatory calculi is given along with some examples. These are able to represent all their Turing-computable functions whose domain is limited to normal forms. The combinator F can be typed using an existential type to represent internal type information.


2004 ◽  
Vol 14 (09) ◽  
pp. 3337-3345 ◽  
Author(s):  
JIANPING PENG ◽  
DUO WANG

A sufficient condition for the uniqueness of the Nth order normal form is provided. A new grading function is proposed and used to prove the uniqueness of the first-order normal forms of generalized Hopf singularities. Recursive formulas for computation of coefficients of unique normal forms of generalized Hopf singularities are also presented.


Author(s):  
Michael J. O’Donnell

Sections 2.3.4 and 2.3.5 of the chapter ‘Introduction: Logic and Logic Programming Languages’ are crucial prerequisites to this chapter. I summarize their relevance below, but do not repeat their content. Logic programming languages in general are those that compute by deriving semantic consequences of given formulae in order to answer questions. In equational logic programming languages, the formulae are all equations expressing postulated properties of certain functions, and the questions ask for equivalent normal forms for given terms. Section 2.3.4 of the ‘Introduction . . .’ chapter gives definitions of the models of equational logic, the semantic consequence relation . . . T |=≐(t1 ≐ t2) . . . (t1 ≐ t2 is a semantic consequence of the set T of equations, see Definition 2.3.14), and the question answering relation . . . (norm t1,…,ti : t) ?- ≐ (t ≐ s) . . . (t ≐ s asserts the equality of t to the normal form s, which contains no instances of t1, . . . , ti, see Definition 2.3.16).


2014 ◽  
Vol 24 (07) ◽  
pp. 1450090 ◽  
Author(s):  
Tiago de Carvalho ◽  
Durval José Tonon

In this paper, we are dealing with piecewise smooth vector fields in a 2D-manifold. In such a scenario, the main goal of this paper is to exhibit the homeomorphism that gives the topological equivalence between a codimension one piecewise smooth vector field and the respective C0-normal form.


Sign in / Sign up

Export Citation Format

Share Document