scholarly journals MDPHnet: Secure, Distributed Sharing of Electronic Health Record Data for Public Health Surveillance, Evaluation, and Planning

2014 ◽  
Vol 104 (12) ◽  
pp. 2265-2270 ◽  
Author(s):  
Joshua Vogel ◽  
Jeffrey S. Brown ◽  
Thomas Land ◽  
Richard Platt ◽  
Michael Klompas
2020 ◽  
pp. e1-e8
Author(s):  
Noelle M. Cocoros ◽  
Chaim Kirby ◽  
Bob Zambarano ◽  
Aileen Ochoa ◽  
Karen Eberhardt ◽  
...  

Automated analysis of electronic health record (EHR) data is a complementary tool for public health surveillance. Analyzing and presenting these data, however, demands new methods of data communication optimized to the detail, flexibility, and timeliness of EHR data. RiskScape is an open-source, interactive, Web-based, user-friendly data aggregation and visualization platform for public health surveillance using EHR data. RiskScape displays near-real-time surveillance data and enables clinical practices and health departments to review, analyze, map, and trend aggregate data on chronic conditions and infectious diseases. Data presentations include heat maps of prevalence by zip code, time series with statistics for trends, and care cascades for conditions such as HIV and HCV. The platform’s flexibility enables it to be modified to incorporate new conditions quickly—such as COVID-19. The Massachusetts Department of Public Health (MDPH) uses RiskScape to monitor conditions of interest using data that are updated monthly from clinical practice groups that cover approximately 20% of the state population. RiskScape serves an essential role in demonstrating need and burden for MDPH’s applications for funding, particularly through the identification of inequitably burdened populations. (Am J Public Health. Published online ahead of print December 22, 2020: e1–e8. https://doi.org/10.2105/AJPH.2020.305963 )


2011 ◽  
Vol 4 (0) ◽  
Author(s):  
James Cheek ◽  
Aneel Advani ◽  
Brigg Reilley ◽  
Frank Hack ◽  
Amy Groom ◽  
...  

Author(s):  
Sharon E. Perlman ◽  
Katharine H. McVeigh ◽  
Remle Newton-Dame ◽  
Lorna E. Thorpe ◽  
Elisabeth F. Snell ◽  
...  

2011 ◽  
Vol 4 (0) ◽  
Author(s):  
Michael Klompas ◽  
Chaim Kirby ◽  
Jason McVetta ◽  
Paul Oppedisano ◽  
John Brownstein ◽  
...  

Author(s):  
José Carlos Ferrão ◽  
Mónica Duarte Oliveira ◽  
Daniel Gartner ◽  
Filipe Janela ◽  
Henrique M. G. Martins

2020 ◽  
Vol 41 (S1) ◽  
pp. s39-s39
Author(s):  
Pontus Naucler ◽  
Suzanne D. van der Werff ◽  
John Valik ◽  
Logan Ward ◽  
Anders Ternhag ◽  
...  

Background: Healthcare-associated infection (HAI) surveillance is essential for most infection prevention programs and continuous epidemiological data can be used to inform healthcare personal, allocate resources, and evaluate interventions to prevent HAIs. Many HAI surveillance systems today are based on time-consuming and resource-intensive manual reviews of patient records. The objective of HAI-proactive, a Swedish triple-helix innovation project, is to develop and implement a fully automated HAI surveillance system based on electronic health record data. Furthermore, the project aims to develop machine-learning–based screening algorithms for early prediction of HAI at the individual patient level. Methods: The project is performed with support from Sweden’s Innovation Agency in collaboration among academic, health, and industry partners. Development of rule-based and machine-learning algorithms is performed within a research database, which consists of all electronic health record data from patients admitted to the Karolinska University Hospital. Natural language processing is used for processing free-text medical notes. To validate algorithm performance, manual annotation was performed based on international HAI definitions from the European Center for Disease Prevention and Control, Centers for Disease Control and Prevention, and Sepsis-3 criteria. Currently, the project is building a platform for real-time data access to implement the algorithms within Region Stockholm. Results: The project has developed a rule-based surveillance algorithm for sepsis that continuously monitors patients admitted to the hospital, with a sensitivity of 0.89 (95% CI, 0.85–0.93), a specificity of 0.99 (0.98–0.99), a positive predictive value of 0.88 (0.83–0.93), and a negative predictive value of 0.99 (0.98–0.99). The healthcare-associated urinary tract infection surveillance algorithm, which is based on free-text analysis and negations to define symptoms, had a sensitivity of 0.73 (0.66–0.80) and a positive predictive value of 0.68 (0.61–0.75). The sensitivity and positive predictive value of an algorithm based on significant bacterial growth in urine culture only was 0.99 (0.97–1.00) and 0.39 (0.34–0.44), respectively. The surveillance system detected differences in incidences between hospital wards and over time. Development of surveillance algorithms for pneumonia, catheter-related infections and Clostridioides difficile infections, as well as machine-learning–based models for early prediction, is ongoing. We intend to present results from all algorithms. Conclusions: With access to electronic health record data, we have shown that it is feasible to develop a fully automated HAI surveillance system based on algorithms using both structured data and free text for the main healthcare-associated infections.Funding: Sweden’s Innovation Agency and Stockholm County CouncilDisclosures: None


Sign in / Sign up

Export Citation Format

Share Document