Utilização de MEMS((Micro-Electro-Mechanical Systems – sistemas microeletromecânico) para aplicações de circuitos de baixo custo de movimentação e sensoriamento

2022 ◽  
Vol 5 ◽  
pp. 82-91
Author(s):  
Jackson Stuhler

Com o avanço da tecnologia os processos de fabricação de microcomponentes dentro de um circuito integrado (CIs) permitiram a construção de micro estruturas mecânicos como sensores e atuadores comumente chamadas de MEMS (electro-mechanical systems – sistemas eletromecânicos) com tamanho na ordem de 0,001 mm e podendo ser compostos de diversos materiais como silicone, cerâmica, polímeros e metais estes sensores estão revolucionando o mercado com diversas aplicações na área de entretenimento, indústria, medicina, automobilístico e aeroespacial dentre outros, que anteriormente era muito limitado devido ao custo e tamanho dos dispositivos. Dentre esses dispositivos serão abordado os sensores de Unidade de Medição Inercial (IMU) com foco no sensoriamento para unidades de automação e robótica.

2011 ◽  
Vol 36 (7) ◽  
pp. 1089 ◽  
Author(s):  
Wei-Chao Chiu ◽  
Chun-Che Chang ◽  
Jiun-Ming Wu ◽  
Ming-Chang M. Lee ◽  
Jia-Min Shieh

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1228 ◽  
Author(s):  
Dorothy Anne Hardy ◽  
Zahra Rahemtulla ◽  
Achala Satharasinghe ◽  
Arash Shahidi ◽  
Carlos Oliveira ◽  
...  

Electronically active yarn (E-yarn) pioneered by the Advanced Textiles Research Group of Nottingham Trent University contains a fine conductive copper wire soldered onto a package die, micro-electro-mechanical systems device or flexible circuit. The die or circuit is then held within a protective polymer packaging (micro-pod) and the ensemble is inserted into a textile sheath, forming a flexible yarn with electronic functionality such as sensing or illumination. It is vital to be able to wash E-yarns, so that the textiles into which they are incorporated can be treated as normal consumer products. The wash durability of E-yarns is summarized in this publication. Wash tests followed a modified version of BS EN ISO 6330:2012 procedure 4N. It was observed that E-yarns containing only a fine multi-strand copper wire survived 25 cycles of machine washing and line drying; and between 5 and 15 cycles of machine washing followed by tumble-drying. Four out of five temperature sensing E-yarns (crafted with thermistors) and single pairs of LEDs within E-yarns functioned correctly after 25 cycles of machine washing and line drying. E-yarns that required larger micro-pods (i.e., 4 mm diameter or 9 mm length) were less resilient to washing. Only one out of five acoustic sensing E-yarns (4 mm diameter micro-pod) operated correctly after 20 cycles of washing with either line drying or tumble-drying. Creating an E-yarn with an embedded flexible circuit populated with components also required a relatively large micro-pod (diameter 0.93 mm, length 9.23 mm). Only one embedded circuit functioned after 25 cycles of washing and line drying. The tests showed that E-yarns are suitable for inclusion in textiles that require washing, with some limitations when larger micro-pods were used. Reduction in the circuit’s size and therefore the size of the micro-pod, may increase wash resilience.


2008 ◽  
Vol 3 (1) ◽  
pp. 37-43
Author(s):  
Lianqun Zhou ◽  
Yihui Wu ◽  
Ping Zhang ◽  
Ming Xuan ◽  
Zhenggang Li ◽  
...  

Author(s):  
M. Martinez ◽  
B. Rocha ◽  
M. Li ◽  
G. Shi ◽  
A. Beltempo ◽  
...  

The National Research Council of Canada has developed Structural Health Monitoring (SHM) test platforms for load and damage monitoring, sensor system testing and validation. One of the SHM platform consists of two 2.25 meter long, simple cantilever aluminium beams that provide a perfect scenario for evaluating the capability of a load monitoring system to measure bending, torsion and shear loads. In addition to static and quasi-static loading procedures, these structures can be fatigue loaded using a realistic aircraft usage spectrum while SHM and load monitoring systems are assessed for their performance and accuracy. In this study, Micro-Electro-Mechanical Systems (MEMS), consisting of triads of gyroscopes, accelerometers and magnetometers, were used to compute changes in angles at discrete stations along the structure. A Least Squares based algorithm was developed for polynomial fitting of the different data obtained from the MEMS installed in several spatial locations of the structure. The angles obtained from the MEMS sensors were fitted with a second, third and/or fourth order degree polynomial surface, enabling the calculation of displacements at every point. The use of a novel Kalman filter architecture was evaluated for an accurate angle and subsequent displacement estimation. The outputs of the newly developed algorithms were then compared to the displacements obtained from the Linear Variable Displacement Transducers (LVDT) connected to the structures. The determination of the best Least Squares based polynomial fit order enabled the application of derivative operators with enough accuracy to permit the calculation of strains along the structure. The calculated strain values were subsequently compared to the measurements obtained from reference strain gauges installed at different locations on the structure. This new approach for load monitoring was able to provide accurate estimates of applied strains and loads.


2009 ◽  
Vol 9 (11) ◽  
pp. 4852-4859 ◽  
Author(s):  
Matteo Bosi ◽  
Bernard E. Watts ◽  
Giovanni Attolini ◽  
Claudio Ferrari ◽  
Cesare Frigeri ◽  
...  

Author(s):  
G. K. Ananthasuresh ◽  
Sridhar Kota

Abstract A great majority of the available micro devices and systems use compliant (or flexible) structures and mechanisms. This trend in design takes advantage of micromachining techniques while satisfying the constraints imposed by them. By citing relevant literature, this article briefly notes the influence of compliance on the mechanical design and analysis of Micro-Electro-Mechanical Systems (MEMS).


Sign in / Sign up

Export Citation Format

Share Document