Pore Pressure Prediction in Sandstone Using a Lateral Transfer Approach

2021 ◽  
Author(s):  
Jose Francisco Consuegra

Abstract Accurate pore pressure prediction is required to determine reliable static mud weights and circulating pressures, necessary to mitigate the risk of influx, blowouts and borehole instability. To accurately estimate the pore pressure, the over-pressure mechanism has to be identified with respect to the geological environment. One of the most widely used methods for pore pressure prediction is based on Normal Compaction Trend Analysis, where the difference between a ‘normal trend' and log value of a porosity indicator log such as sonic or resistivity is used to estimate the pore pressure. This method is biased towards shales, which typically exhibit a strong relationship between porosity and depth. Overpressure in non-shale formations has to be estimated using a different method to avoid errors while predicting the pore pressure. In this study, a different method for pore pressure prediction has been performed by using the lateral transfer approach. Many offset wells were used to predict the pore pressure. Lateral transfer in the sand body was identified as the mechanism for overpressure. This form of overpressure cannot be identified by well logs, which makes the pore pressure prediction more complex. Building a 2D geomechanical model, using seismic data as an input and following an analysis methodology that considered three type of formation fluids - gas, oil and water in the sand body, all pore pressure gradients related to lateral transfer for the respective fluids were evaluated. This methodology was applied to a conventional reservoir in a field in Colombia and was helpful to select the appropriate mud weight and circulating pressure to mitigate drilling risks associated to this mechanism of overpressure. Seismic data was critical to identifying this type of overpressure mechanism and was one of the main inputs for building the geomechanical earth model. This methodology enables drilling engineers and geoscientists to confidently predict, assess and mitigate the risks posed by overpressure in non-shale formations where lateral transfer is the driving mechanism of overpressure. This will ensure a robust well plan and minimize drilling/well control hazards associated with this mode of overpressure.

2003 ◽  
Author(s):  
P. M. Doyen ◽  
A. Malinverno ◽  
R. Prioul ◽  
P. Hooyman ◽  
S. Noeth ◽  
...  

2000 ◽  
Author(s):  
C.M. Sayers ◽  
G.M. Johnson ◽  
G. Denyer

AAPG Bulletin ◽  
2018 ◽  
Vol 102 (04) ◽  
pp. 691-708 ◽  
Author(s):  
Fausto Mosca ◽  
Thomas Hantschel ◽  
Obren Djordjevic ◽  
Jim McCarthy ◽  
Ana Krueger ◽  
...  

Geophysics ◽  
2005 ◽  
Vol 70 (6) ◽  
pp. O39-O50 ◽  
Author(s):  
Øyvind Kvam ◽  
Martin Landrø

In an exploration context, pore-pressure prediction from seismic data relies on the fact that seismic velocities depend on pore pressure. Conventional velocity analysis is a tool that may form the basis for obtaining interval velocities for this purpose. However, velocity analysis is inaccurate, and in this paper we focus on the possibilities and limitations of using velocity analysis for pore-pressure prediction. A time-lapse seismic data set from a segment that has undergone a pore-pressure increase of 5 to 7 MPa between the two surveys is analyzed for velocity changes using detailed velocity analysis. A synthetic time-lapse survey is used to test the sensitivity of the velocity analysis with respect to noise. The analysis shows that the pore-pressure increase cannot be detected by conventional velocity analysis because the uncertainty is much greater than the expected velocity change for a reservoir of the given thickness and burial depth. Finally, by applying amplitude-variation-with-offset (AVO) analysis to the same data, we demonstrate that seismic amplitude analysis may yield more precise information about velocity changes than velocity analysis.


2020 ◽  
Vol 17 (2) ◽  
pp. 97-103
Author(s):  
A. Ogbamikhumi ◽  
O.M. Hamid-Osazuwa ◽  
E.A. Imoru

Understanding the distribution and variation of subsurface formation pressure is key to preventing geo-hazards associated with drilling activities such as kicks and blow out. To assess and prevent such risk in drilling offset wells in the Hamoru field, prediction of pore pressure was done to understand the pressure regime of the field using well logs in the absence of seismic data. Two commonly used methods for formation pressure prediction; Bower’s and Eaton’s methods were adopted to predict pore pressure and determine the better of the two methods that will be more suitable for the field. The cross-plot of Vp against density disclosed that compaction disequilibrium is the prevalent overpressure mechanism. The prediction of Pore pressure with Eaton’s method gave results comparable to the acquired pressure in the field, typical of what is expected when compaction disequilibrium is the dominant overpressure mechanism. Since the result of Bower’s method over estimated formation pressure, Eaton’s method appears to be the better choice for predicting the formation pore pressure in the field. Analysis of the predicted pore pressure reveals the onset of overpressure at depth of 2.44 km. The formation pressure gradient ranges from 10.4 kPa/m to 15.2 kPa/m interpreted as mild to moderately over pressure. Keywords: Geohazard, over-pressure, Eaton’s method, Bower’s method, normal compaction trend


Sign in / Sign up

Export Citation Format

Share Document