velocity analysis
Recently Published Documents


TOTAL DOCUMENTS

1322
(FIVE YEARS 115)

H-INDEX

51
(FIVE YEARS 4)

2021 ◽  
Vol XII (2) ◽  
pp. 115-125
Author(s):  
Brandon Neth ◽  
◽  
Eleni Hasaki ◽  

The potter’s wheel is central to the understanding of ancient technology, knowledge transfer, and social complexity. With scant evidence of potter’s wheels from antiquity, experimental projects with replica potter’s wheels can help researchers address larger questions on ceramic production. One such set of experiments, performed using the Ancient Greek wheel replica in Tucson modelled on Athenian and Corinthian iconographic evidence, provided useful insight into the qualitative experience of ancient potters. In past experiments, the quantitative analysis of the throwing sessions included data on wheel velocity which had been collected collected over large intervals, comprising entire stages of the throwing process. While this method provides an overview of rotational speed, a continuous velocity graph provides a clearer picture collected data on wheel velocity. To address this, we developed a web application (WheelVis; brandonneth.github.io/wheelvis) to aid in the velocity analysis of experimental potter’s wheels. Users provide a recording of the throwing session and while advancing through the recording, they mark points where the wheel has completed rotations. Using the time intervals between these points, the tool reconstructs a graph of the velocity of the wheel throughout the throwing session. This innovative application provides fast, fine-grained velocity information, and helps archaeologists answer questions about the physical properties of their experimental replicas or wheels used in traditional workshops. Future development of the application will include contextual partitions to allow users to split the throw into different stages, enabling further analysis into the throwing process. Moreover, intelligent error detection would notify users when a mark is likely to be made in error and allow them to correct their mistake.


Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
German Garabito ◽  
José Silas dos Santos Silva ◽  
Williams Lima

In land seismic data processing, the prestack time migration (PSTM) image remains the standard imaging output, but a reliable migrated image of the subsurface depends on the accuracy of the migration velocity model. We have adopted two new algorithms for time-domain migration velocity analysis based on wavefield attributes of the common-reflection-surface (CRS) stack method. These attributes, extracted from multicoverage data, were successfully applied to build the velocity model in the depth domain through tomographic inversion of the normal-incidence-point (NIP) wave. However, there is no practical and reliable method for determining an accurate and geologically consistent time-migration velocity model from these CRS attributes. We introduce an interactive method to determine the migration velocity model in the time domain based on the application of NIP wave attributes and the CRS stacking operator for diffractions, to generate synthetic diffractions on the reflection events of the zero-offset (ZO) CRS stacked section. In the ZO data with diffractions, the poststack time migration (post-STM) is applied with a set of constant velocities, and the migration velocities are then selected through a focusing analysis of the simulated diffractions. We also introduce an algorithm to automatically calculate the migration velocity model from the CRS attributes picked for the main reflection events in the ZO data. We determine the precision of our diffraction focusing velocity analysis and the automatic velocity calculation algorithms using two synthetic models. We also applied them to real 2D land data with low quality and low fold to estimate the time-domain migration velocity model. The velocity models obtained through our methods were validated by applying them in the Kirchhoff PSTM of real data, in which the velocity model from the diffraction focusing analysis provided significant improvements in the quality of the migrated image compared to the legacy image and to the migrated image obtained using the automatically calculated velocity model.


2021 ◽  
Vol 9 ◽  
Author(s):  
Linfei Wang ◽  
Huaishan Liu ◽  
Zhong Wang ◽  
Jin Zhang ◽  
Lei Xing ◽  
...  

Marine vertical cable seismic (VCS) is a promising survey technique for submarine complex structure imaging and reservoir monitoring, which uses vertical arrays of hydrophones deployed near the seafloor to record seismic wavefields in a quiet environment. Recently, we developed a new type of distributed VCS system for exploration and development of natural gas hydrates preserved in shallow sediments under the seafloor. Using this system and air-gun sources, we accomplished a 3D VCS yield data acquisition for gas hydrates exploration in the Shenhu area, South China Sea. In view of the characteristics of VCS geometry, we implement reverse time migration (RTM) on a common receiver gather to obtain high-resolution images of marine sediments. Due to the unique acquisition method, it is asymmetrical for the reflection path between the sources and the receivers in the VCS survey. Therefore, we apply accurate velocity analysis to common scatter point (CSP) gathers generated from common receiver gathers instead of the conventional velocity analysis based on common depth point gathers. RTM with this reliable velocity model results in high-resolution images of submarine hydrate-bearing sediments in deep water conditions. The RTM imaging section clearly shows the bottom simulating reflector (BSR) and also the reflection characteristics of the hydrate-bearing sediments filled with consolidated hydrates. Moreover, its resolution is relative to that of acoustic logging curves from the nearby borehole, and this imaging section is well consistent with the synthetic seismogram trace generated by the logging data. All these results reveal that VCS is a great potential technology for exploration and production of marine natural gas hydrates.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7439
Author(s):  
Piotr Sokolski ◽  
Justyna Sokolska

Bucket elevators are applied in many industries for bulk material handling. One of the main requirements for these devices is their high operational reliability. This applies in particular to power units that must operate continuously without failure. This article presents a comparative assessment of the drive units of two bucket elevators. The vibration intensity of their bearing units was used as the basis for the comparison. The evaluation was carried out using three independent methods based on the vibration velocity analysis: in the time domain, in the frequency domain and using the probabilistic approach.


2021 ◽  
Vol 873 (1) ◽  
pp. 012038
Author(s):  
Madaniya Oktariena ◽  
Wahyu Triyoso ◽  
Dona Sita Ambarsari ◽  
Sigit Sukmono ◽  
Erlangga Septama ◽  
...  

Abstract The seismic far-offset data plays important role in seismic subsurface imaging and reservoir parameters derivation, however, it is often distorted by the hockey stick effect due to improper correction of the Vertical Transverse Isotropy (VTI) during the seismic velocity analysis. The anisotropy parameter η is needed to properly correct the VTI effect. The anisotropy parameters of ε and δ obtained from log and core measurements, can be used to estimate the η values, however, the upscaling effects due to the different frequencies of the wave sources used in the measurements must be carefully taken into account. The objective is to get better understanding on the proper uses of anisotropy parameters in the the velocity analysis of deepwater seismic gather data. To achieve the objective, the anisotropy parameters from ultrasonic core measurements and dipole sonic log were used to model the seismic CDP gathers. The upscaling effects is reflected by the big difference of measured anisotropy values, in which the core measurement value is about 40 times higher than the log measurement value. The CDP gathers modelling results show that, due to the upscaling effect, the log and core-based models show significant differences of far-offset amplitude and hockey sticks responses. The differences can be minimized by scaling-down the log anisotropy values to core anisotropy values by using equations established from core – log anisotropy values cross-plot. The study emphasizes the importances of integrating anisotropy parameters from core and log data to minimize the upscaling effect to get the best η for the VTI correction in seismic velocity analysis.


Robotica ◽  
2021 ◽  
pp. 1-16
Author(s):  
Özgün Selvi

SUMMARY Overconstrained manipulators in lower subspaces with unique motions can be created and analyzed. However, far too little attention has been paid to creating a generic method for overconstrained manipulators kinematic analysis. This study aimed to evaluate a generic methodology for kinematic analysis of overconstrained parallel manipulators with partial subspaces (OPM-PS) using decomposition to parallel manipulators (PMs) in lower subspaces. The theoretical dimensions of the method are depicted, and the use of partial subspace for overconstrained manipulators is portrayed. The methodology for the decomposition method is described and exemplified by designing and evaluating the method to two overconstrained manipulators with 5 degrees of freedom (DoF) and 3 DoF. The inverse kinematic analysis is detailed with position analysis and Jacobian along with the inverse velocity analysis. The workspace analysis for the manipulators using the methodology is elaborated with numerical results. The results of the study show that OPM-PS can be decomposed into PMs with lower subspace numbers. As imaginary joints are being utilized in the proposed methodology, it will create additional data to consider in the design process of the manipulators. Thus, it becomes more beneficial in design scenarios that include workspace as an objective.


Geophysics ◽  
2021 ◽  
pp. 1-68
Author(s):  
Alejandro Cabrales-Vargas ◽  
Rahul Sarkar ◽  
Biondo L. Biondi ◽  
Robert G. Clapp

During linearized waveform inversion, the presence of small inaccuracies in the background subsurface model can lead to unfocused seismic events in the final image. The effect on the amplitude can mislead the interpretation. We present a joint inversion scheme in the model domain of the reflectivity and the background velocity model. The idea is to unify the inversion of the background and the reflectivity model into a single framework instead of treating them as decoupled problems. We show that with this method, we can obtain a better estimate of the reflectivity than that obtained with conventional linearized waveform inversion. Conversely, the background model is improved by the joint inversion with the reflectivity in comparison with wave-equation migration velocity analysis. We perform tests on 2D synthetics and 3D field data that demonstrate both benefits.


Author(s):  
Lyla Atta ◽  
Arpan Sahoo ◽  
Jean Fan

Abstract Motivation Single-cell transcriptomics profiling technologies enable genome-wide gene expression measurements in individual cells but can currently only provide a static snapshot of cellular transcriptional states. RNA velocity analysis can help infer cell state changes using such single-cell transcriptomics data. To interpret these cell state changes inferred from RNA velocity analysis as part of underlying cellular trajectories, current approaches rely on visualization with principal components, t-distributed stochastic neighbor embedding and other 2D embeddings derived from the observed single-cell transcriptional states. However, these 2D embeddings can yield different representations of the underlying cellular trajectories, hindering the interpretation of cell state changes. Results We developed VeloViz to create RNA velocity-informed 2D and 3D embeddings from single-cell transcriptomics data. Using both real and simulated data, we demonstrate that VeloViz embeddings are able to capture underlying cellular trajectories across diverse trajectory topologies, even when intermediate cell states may be missing. By considering the predicted future transcriptional states from RNA velocity analysis, VeloViz can help visualize a more reliable representation of underlying cellular trajectories. Availability and implementation Source code is available on GitHub (https://github.com/JEFworks-Lab/veloviz) and Bioconductor (https://bioconductor.org/packages/veloviz) with additional tutorials at https://JEF.works/veloviz/. Datasets used can be found on Zenodo (https://doi.org/10.5281/zenodo.4632471). Supplementary information Supplementary data are available at Bioinformatics online.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5164
Author(s):  
Meiqi Chen ◽  
Sivakumar Gowthaman ◽  
Kazunori Nakashima ◽  
Shin Komatsu ◽  
Satoru Kawasaki

Recently, green materials and technologies have received considerable attention in geotechnical engineering. One of such techniques is microbially-induced carbonate precipitation (MICP). In the MICP process, CaCO3 is achieved bio-chemically within the soil, thus enhancing the strength and stiffness. The purpose of this study is to introduce the wastepaper fiber (WPF) onto the MICP (i) to study the mechanical properties of MICP-treated sand with varying WPF content (0–8%) and (ii) to assess the freeze–thaw (FT) durability of the treated samples. Findings revealed that the ductility of the treated samples increases with the increase in WPF addition, while the highest UCS is found with a small fiber addition. The results of CaCO3 content suggest that the WPF addition enhances the immobilization of the bacteria cells, thus yielding the precipitation content. However, shear wave velocity analysis indicates that a higher addition of WPF results in rapid deterioration of the samples when subjected to freeze–thaw cycles. Microscale analysis illuminates that fiber clusters replace the solid bonding at particle contacts, leading to reduced resistance to freeze–thaw damage. Overall, the study demonstrates that as a waste material, WPF could be sustainably reused in the bio-cementation.


Sign in / Sign up

Export Citation Format

Share Document