Pore Pressure Prediction for Shale Formations Using Well Log Data

2015 ◽  
pp. 139-167 ◽  
Author(s):  
Abualksim Ahmad ◽  
Reza Rezaee
Author(s):  
Mohammad Farsi ◽  
Nima Mohamadian ◽  
Hamzeh Ghorbani ◽  
David A. Wood ◽  
Shadfar Davoodi ◽  
...  

2021 ◽  
Author(s):  
Jose Francisco Consuegra

Abstract Accurate pore pressure prediction is required to determine reliable static mud weights and circulating pressures, necessary to mitigate the risk of influx, blowouts and borehole instability. To accurately estimate the pore pressure, the over-pressure mechanism has to be identified with respect to the geological environment. One of the most widely used methods for pore pressure prediction is based on Normal Compaction Trend Analysis, where the difference between a ‘normal trend' and log value of a porosity indicator log such as sonic or resistivity is used to estimate the pore pressure. This method is biased towards shales, which typically exhibit a strong relationship between porosity and depth. Overpressure in non-shale formations has to be estimated using a different method to avoid errors while predicting the pore pressure. In this study, a different method for pore pressure prediction has been performed by using the lateral transfer approach. Many offset wells were used to predict the pore pressure. Lateral transfer in the sand body was identified as the mechanism for overpressure. This form of overpressure cannot be identified by well logs, which makes the pore pressure prediction more complex. Building a 2D geomechanical model, using seismic data as an input and following an analysis methodology that considered three type of formation fluids - gas, oil and water in the sand body, all pore pressure gradients related to lateral transfer for the respective fluids were evaluated. This methodology was applied to a conventional reservoir in a field in Colombia and was helpful to select the appropriate mud weight and circulating pressure to mitigate drilling risks associated to this mechanism of overpressure. Seismic data was critical to identifying this type of overpressure mechanism and was one of the main inputs for building the geomechanical earth model. This methodology enables drilling engineers and geoscientists to confidently predict, assess and mitigate the risks posed by overpressure in non-shale formations where lateral transfer is the driving mechanism of overpressure. This will ensure a robust well plan and minimize drilling/well control hazards associated with this mode of overpressure.


2019 ◽  
Vol 7 (2) ◽  
pp. 142
Author(s):  
Ubong Essien

Well log data from two wells were evaluated for shale volume, total and effective porosity. Well log data were obtained from gamma ray, neutron-density log, resistivity, sonic and caliper log respectively. This study aimed at evaluating the effect of shale volume, total and effective porosity form two well log data. The results of the analysis depict the presence of sand, sand-shale and shale formations. Hydrocarbon accumulation were found to be high in sand, fair in sand-shale and low in shale, since existence of shale reduces total and effective porosity and water saturation of the reservoir. The thickness of the reservoir ranged from 66 – 248.5ft. The average values of volume of shale, total and effective porosity values ranged from 0.004 – 0.299dec, 0.178 – 0.207dec and 0.154 – 0.194dec. Similarly, the water saturation and permeability ranged from 0.277 – 0.447dec and 36.637 - 7808.519md respectively. These values of total and effective porosity are high in sand, fair in sand-shale and low in shale formations. The results for this study demonstrate: accuracy, applicability of these approaches and enhance the proper evaluation of petrophysical parameters from well log data.    


2021 ◽  
Vol 1 (1) ◽  
pp. 248-266
Author(s):  
Aris Buntoro ◽  
Basuki Rahmad ◽  
Allen Haryanto Lukmana ◽  
Dewi Asmorowati

In the drilling operation of well OP-002 which is located in the North Sumatra Basin at a depth interval of 2887 - 3186 m occurred partial loss, and caving at a depth interval of 500 - 1650 m, where the drilling problem is caused by the use of inappropriate mud weight. Safe mud window analysis is carried out by processing well log data to build PPFG (Pore Pressure Fracture Gradient) and 1D Geomechanics model using several calculation methods. Furthermore, the results of the calculation of pore pressure and fracture gradient are validated with well test data from the well OP-002, so the safe mud window can be determined, and can be used as a basis in the analysis of the drilling problems that occur. The optimum mud weight can minimize wellbore instability, with a limit value that must be greater than the collapse pressure, but not exceeding the minimum insitu stress limit. From the results of the mud safe window analysis, it can be concluded that at a depth interval of 500 - 1650 m caving occurs, because the density value used is smaller than the shear failure gradient, and at a depth interval of 1619 - 2829 m, the density value used is greater than Shmin. To overcome this problem, a mud wight with a safe mud window concept is recommended, namely the selection of the optimum mud weight to be used must be greater than the pore pressure and shear failure gradient and does not exceed the minimum horizontal stress and fracture gradient values.


Sign in / Sign up

Export Citation Format

Share Document