3d seismic
Recently Published Documents


TOTAL DOCUMENTS

2640
(FIVE YEARS 514)

H-INDEX

53
(FIVE YEARS 7)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 534
Author(s):  
Fateh Bouchaala ◽  
Mohammed Y. Ali ◽  
Jun Matsushima ◽  
Youcef Bouzidi ◽  
Mohammed S. Jouini ◽  
...  

Previous studies performed in Abu Dhabi oilfields, United Arab Emirates, revealed the direct link of seismic wave attenuation to petrophysical properties of rocks. However, all those studies were based on zero offset VSP data, which limits the attenuation estimation at one location only. This is due to the difficulty of estimating attenuation from 3D seismic data, especially in carbonate rocks. To overcome this difficulty, we developed a workflow based on the centroid frequency shift method and Gabor transform which is optimized by using VSP data. The workflow was applied on 3D Ocean Bottom Cable seismic data. Distinct attenuation anomalies were observed in highly heterogeneous and saturated zones, such as the reservoirs and aquifers. Scattering shows significant contribution in attenuation anomalies, which is unusual in sandstones. This is due to the complex texture and heterogeneous nature of carbonate rocks. Furthermore, attenuation mechanisms such as frictional relative movement between fluids and solid grains, are most likely other important causes of attenuation anomalies. The slight lateral variation of attenuation reflects the lateral homogeneous stratigraphy of the oilfield. The results demonstrate the potential of seismic wave attenuation for delineating heterogeneous zones with high fluid content, which can substantially help for enhancing oil recovery.


Geophysics ◽  
2022 ◽  
pp. 1-48
Author(s):  
Hamed Heidari ◽  
Thomas Mejer Hansen ◽  
Hamed Amini ◽  
Mohammad Emami Niri ◽  
Rasmus Bødker Madsen ◽  
...  

We use a sampling-based Markov chain Monte Carlo method to invert seismic data directly for porosity and quantify its uncertainty distribution in a hard-rock carbonate reservoir in Southwest Iran. The noise that remains on seismic data after the processing flow is correlated with the bandwidth in the range of the seismic wavelet. Hence, to account for the inherent correlated nature of the band-limited seismic noise in the probabilistic inversion of real seismic data, we assume the estimated seismic wavelet as a suitable proxy for capturing the coupling of noise samples. In contrast to the common approach of inserting a delta function on the main diagonal of the covariance matrix, we insert the seismic wavelet on its main diagonal. We also calibrate an empirical and a semi-empirical inclusion-based rock-physics model to characterize the rock-frame elastic moduli via a lithology constrained fitting of the parameters of these models, i.e. the critical porosity and the pore aspect ratio. These calibrated rock-physics models are embedded in the inversion procedure to link petrophysical and elastic properties. In addition, we obtain the pointwise critical porosity and pore aspect ratio, which can potentially facilitate the interpretation of the reservoir for further studies. The inversion results are evaluated by comparing with porosity logs and an existing geological model (porosity model) constructed through a geostatistical simulation approach. We assess the consistency of the geological model through a geomodel-to-seismic modeling approach. The results confirm the performance of the probabilistic inversion in resolving some thin layers and reconstructing the observed seismic data. We present the applicability of the proposed sampling-based approach to invert 3D seismic data for estimating the porosity distribution and its associated uncertainty for four subzones of the reservoir. The porosity time maps and the facies probabilities obtained via porosity cut-offs indicate the relative quality of the reservoir’s subzones.


2021 ◽  
pp. 4802-4809
Author(s):  
Mohammed H. Al-Aaraji ◽  
Hussein H. Karim

      The seismic method depends on the nature of the reflected waves from the interfaces between layers, which in turn depends on the density and velocity of the layer, and this is called acoustic impedance. The seismic sections of the East Abu-Amoud field that is located in Missan Province, south-eastern Iraq, were studied and interpreted for updating the structural picture of the major Mishrif Formation for the reservoir in the field. The Mishrif Formation is rich in petroleum in this area, with an area covering about 820 km2. The horizon was calibrated and defined on the seismic section with well logs data (well tops, check shot, sonic logs, and density logs) in the interpretation process to identify the upper and lower boundaries of the Formation.  Seismic attributes were used to study the formation, including instantaneous phase attributes and relative acoustic impedance on time slice of 3D seismic data . Also, relative acoustic impedance was utilized to study the top of the Mishrif Formation. Based on these seismic attributes, karst features of the formation were identified. In addition, the nature of the lithology in the study area and the change in porosity were determined through the relative acoustic impedance The overlap of the top of the Mishrif Formation with the bottom of the Khasib Formation was determined because the Mishrif Formation is considered as an unconformity surface.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xi Wang ◽  
Yin Liu ◽  
Jian Cao ◽  
Yiduo Liu ◽  
Bing Luo ◽  
...  

Deep-seated faults and folds of foreland basin systems have become important exploration targets in the recent years because they are crucial in controlling fluid migration and hydrocarbon accumulation. In this study, we analyzed the characteristics and formation history of these structures in the northwestern Sichuan Basin using recently acquired two-dimensional (2D) and three-dimensional (3D) seismic data. The seismic interpretation revealed that the thrust sheets, tectonic wedges, and foredeep were well developed in the northwestern Sichuan Basin from the mountain to the basin. Forward thrusts, fault-bend folds, and wedges are the main types of structures in the thrust sheets and tectonic wedges. The deep-seated faults and folds were easily recognized in the high-resolution 3D seismic data. The imbricate thrust faults that merged into detachment layers of the Lower Cambrian are the main types of structures in the foredeep, and they show a prominent strike-slip influence in the horizontal direction. The formation of these structures in the foredeep in the northwestern Sichuan Basin mainly endured two stages of thrusting, including those during the Middle-to-Late Triassic and Cenozoic. Based on the tectonic evolution and seismic data, we infer that these deep-seated faults and folds in the foredeep may have formed earlier than the northern Longmen Shan fold-and-thrust belts and they may have been initially active in the late of Early Triassic and reactive during the Cenozoic. Furthermore, evaporites in the Lower and Middle Triassic were crucial in forming these structures. The petroleum exploration data suggested that the deep-seated faults can facilitate hydrocarbon accumulation. The thrust faults in the foredeep were more likely to act as migration pathways for fluids instead of sealing barriers along the horizontal direction. The interconnected reservoirs of deep-seated folds possess a great potential to allow large-scale hydrocarbon accumulation. Our study provides a good example for evaluating the hydrocarbon exploration potential in the deeply buried area in the sedimentary basin.


2021 ◽  
Author(s):  
Ahmed Alghuraybi ◽  
Rebecca Bell ◽  
Chris Jackson

Despite decades of study, models for the growth of normal faults lack a temporal framework within which to understand how these structures accumulate displacement and lengthen through time. Here, we use borehole and high-quality 3D seismic reflection data from offshore Norway to quantify the lateral (0.2-1.8 mmyr-1) and vertical (0.004-0.02 mmyr-1) propagation rates (averaged over 12-44 Myr) for several long (up to 43 km), moderate displacement (up to 225 m) layer-bound faults that we argue provide a unique, essentially ‘fossilised’ snapshot of the earliest stage of fault growth. We show that lateral propagation rates are 90 times faster than displacement rates during the initial 25% of their lifespan suggesting that these faults lengthened much more rapidly than they accrued displacement. Although these faults have slow displacement rates compared with data compiled from 30 previous studies, they have comparable lateral propagation rates. This suggests that the unusual lateral propagation to displacement rate ratio is likely due to fault maturity, which highlights a need to document both displacement and lateral propagation rates to further our understanding of how faults evolve across various temporal and spatial scales.


2021 ◽  
Vol 11 (4) ◽  
pp. 36-50
Author(s):  
Wessam Abdul Abbas Alhammod ◽  
Ban Talib Aljizani

This research focused on using seismic data to review the structure of the (X) Oil Field, located 40 km SW of Basrah, Southern Iraq. The study utilises a 3D seismic survey conducted during 2011-2012, covering the (Y) Oil Field 2 km to the west, and with partial coverage across (X), to map the Top Zubair reflector. Seismic rock properties analysis was conducted on key (X) Oil Field wells and used to tie the Top Zubair reflector on (X) Oil Field. The reflector was mapped within the time domain using DecisionSpace Software, and then converted to depth using a velocity model. The depth structure map was then compared to the original oil water contact (OOWC) across the fields to understand the potential structural closure of the Top Zubair reservoir in both fields.


Sign in / Sign up

Export Citation Format

Share Document