Multi-GPU simulation of turbulent square duct flow under high Reynolds number in lattice Boltzmann method

Author(s):  
Limin Wang ◽  
Tao Hu ◽  
Xing Xiang ◽  
Wei Ge

Abstract Using multi-GPU in lattice Boltzmann method (LBM), fully developed turbulent flow in a square duct at the friction Reynolds numbers (Reτ) of 300, 600, 1200 and 1800 are simulated. Through simulation of three-dimensional lid-driven cavity flow under different Reynolds number (Re), the accuracy of lattice Bhatnager-Gross-Krook (LBGK) multi-GPU program is validated. For turbulent flow in a square duct, all mean velocity, secondary flows, root mean square (rms) of pulsating velocity and Reynolds shear stress predicted by LBGK under the lower Reτ agree well with the literature results, which further verified the effectiveness of the LBGK. In addition, fully developed turbulent flow in a square duct with Reτ up to 1800 predicted by LBGK with 600 million grids provides a reference for turbulent flows under high Reτ . Numerical results show that the LBGK model with low accuracy successfully captures turbulent characteristics for flows at high Re by increasing the grid size, indicating the feasibility and practicality of multi-GPU LBM for modeling industrial flows.

2014 ◽  
Vol 554 ◽  
pp. 665-669
Author(s):  
Leila Jahanshaloo ◽  
Nor Azwadi Che Sidik

The Lattice Boltzmann Method (LBM) is a potent numerical technique based on kinetic theory, which has been effectively employed in various complicated physical, chemical and fluid mechanics problems. In this paper multi-relaxation lattice Boltzmann model (MRT) coupled with a Large Eddy Simulation (LES) and the equation are applied for driven cavity flow at different Reynolds number (1000-10000) and the results are compared with the previous published papers which solve the Navier stokes equation directly. The comparisons between the simulated results show that the lattice Boltzmann method has the capacity to solve the complex flows with reasonable accuracy and reliability. Keywords: Two-dimensional flows, Lattice Boltzmann method, Turbulent flow, MRT, LES.


2013 ◽  
Vol 80 ◽  
pp. 453-458 ◽  
Author(s):  
I. Tanno ◽  
T. Hashimoto ◽  
T. Yasuda ◽  
Y. Tanaka ◽  
K. Morinishi ◽  
...  

1997 ◽  
Vol 9 (11) ◽  
pp. 3535-3542 ◽  
Author(s):  
Takaji Inamuro ◽  
Masato Yoshino ◽  
Fumimaru Ogino

Sign in / Sign up

Export Citation Format

Share Document