high reynolds
Recently Published Documents


TOTAL DOCUMENTS

3243
(FIVE YEARS 400)

H-INDEX

102
(FIVE YEARS 7)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yudong Xu ◽  
Xinming Zhang ◽  
Qiongying Lv ◽  
Guozhen Mu

Purpose A parametric method for designing the hub, casing and blades of the miniature centrifugal compressor impeller was developed. The relationship model of the size, aerodynamic and performance parameters of the centrifugal impeller was established. Based on the selected design parameters, the miniature centrifugal-type impeller was designed, and the work efficiency was calculated. Design/methodology/approach In this study, a micro-centrifugal compressor impeller with a diameter of less than 25 mm was designed. A parametric design method was developed, and the functional relationship between the geometric and gas fluidity parameters was established. Findings The results of this study showed that the performance parameters of the designed micro-centrifugal impeller satisfied the design requirements. The proposed method is useful as a reference for designing and analysing compressor impellers under high Reynolds number conditions. Originality/value A parametric design method was developed, and the functional relationship between the geometric and gas fluidity parameters was established. Under the Reynolds number conditions, the flow characteristics of the gas in the compressor were analysed; the shear-stress transport turbulence equation was solved using the finite volume method. In addition, the effects of the Reynolds number on the velocity, pressure, mass flow and efficiency of the micro-scale centrifugal compressor were evaluated. The results showed that the performance parameters of the designed micro-centrifugal impeller satisfied the design requirements. The proposed method is useful as a reference for designing and analysing compressor impellers under high Reynolds number conditions.


Author(s):  
M Prasad

Abstract Equivalent sand grain roughness is required for estimating friction factor for engineering applications from empirical relation via Haalands equation. The real surfaces are different from the sand grain profile. The correlations for friction factor were derived from use of discrete roughness elements with regular shapes such as cones, bars etc. The purpose of the paper is to derive analytical expression of friction factor for a 2 dimensional semi-cylindrical roughness (not exactly a 3 dimensional sand grain but for the circular profile of cross- section) using Navier Stoke equation and mixing length theory. This is compared with the modified series mathematical representation of Haalands equation for friction factor in terms of equivalent sand grain roughness. The comparison is valid for high Reynolds number where the velocity profile is almost flat beyond boundary layer and approximately linear all throughout the boundary layer. The high Reynolds number approximation for Haalands equation is derived and the series form of the friction factor compares approximately with the series form derived from first principles, where in the exponents of the series expansion are close.


2022 ◽  
Vol 904 ◽  
pp. 51-55
Author(s):  
Jun Yan Ding ◽  
Cui Xiang Jiang

In order to study the influence of the splitter plate in the elastic support system, the SST k-omega turbulence model is used to solve the problem, and the cylindrical system with splitter plate is numerically simulated by overset mesh. This paper studies the effect of the splitter plate on the vibration system at different deflection angles. The results show that the splitter plate has little effect on the system when the deflection angle is low. When the deflection angle is about 10 degrees, the system vibration characteristics will have a sudden change, the amplitude will decrease, and the vortex frequency will increase. Between the deflection angle of 10 degrees and 45 degrees, as the deflection angle increases, the amplitude increases and the vortex frequency decreases. It can be seen from the motion trajectory that the deflection angle changes suddenly after 10 degrees, and the system has a very small amplitude between 10 degrees and 25 degrees. In this declination interval, the splitter plate controls the vibration of the cylindrical system better.


2022 ◽  
Author(s):  
Pierre-Yves Passaggia ◽  
Guillermo Lopez Quesada ◽  
Stéphane Loyer ◽  
Lucien Baldas ◽  
Jean-Christophe Robinet ◽  
...  

2022 ◽  
Author(s):  
Matthew R. Catlett ◽  
Benjamin S. Bryan ◽  
Natasha Chang ◽  
Hugh Hemingway ◽  
Jason M. Anderson

2022 ◽  
Vol 12 (1) ◽  
pp. 416
Author(s):  
Lu Yang ◽  
Guangming Zhang

Currently, influence analysis of simulation parameters, especially the trailing edge shape and the corresponding modeling method on the force coefficients of NACA0012 under a high Reynolds number, is relatively sparse. In this paper, two trailing edge shapes are designed by three modeling methods and combined with three far-field distances to establish eighteen two-dimensional external flow fields. The same number of structured grids are generated by a unified grid strategy and the SST k-omega and the Spalart–Allmaras models are adopted to solve the NS equations to realize the numerical simulations. Unlike under low Reynolds numbers, the analysis results show that although the accuracy difference between the sharp trailing edge and the blunt trailing edge decreases as the attack angle range increases, the former is preferred in all studied ranges. As to the corresponding modeling methods, the NACA4 and the definition formula are preferred, the choice of which depends on the studied range. In particular, a greater number of data points adopted into the definition formula is not necessarily better. Considering the error ratios comprehensively, the simulation configurations of sharp trailing edge + 20 m far-field distance + SA/SST/SST/SST/SST/SA turbulence model obtains optimal simulation effects.


Sign in / Sign up

Export Citation Format

Share Document