scholarly journals A method for identifying  and predicting the geometric errors of a rotating axis

2020 ◽  
Author(s):  
Jinwei Fan ◽  
Peitong Wang ◽  
Haohao Tao ◽  
Zhongsheng Li ◽  
Jian Yin

Abstract To improve the machine tool accuracy, an integrated geometric error identification and prediction method is proposed to eliminate the positioning inaccuracy of tool ball for a double ball bar (DBB) caused by the rotary axis’ geometric errors in a multi-axis machine tool. In traditional geometric errors identification model based on homogenous transformation matrices (HTM), the elements of position-dependent geometric errors(PDGEs) are defifined in the local frames attached to the axial displacement, which is inconvenient to do redundance analysis. Thus, this paper proposed an integrated geometric error identification and prediction method to solve the uncertainty problem of the PDGEs of rotary axis. First, based on homogeneous transform matrix (HTM) and multi-body system (MBS) theory, The transfer matrix only considering the rotary axes is derived to determine the tool point position error model. Then a geometric errors identification of rotary axis is introduced by measuring the error increment in three directions. Meanwhile the geometric errors of C-axis are described as position-dependent truncated Fourier polynomials caused by fitting discrete values. Thus, The geometric error identification is converted to the function coefficient. Finally, the proposed new prediction and identification model of PDGEs in the global frame are verified through simulation and experiments with double ball-bar tests.

2014 ◽  
Vol 496-500 ◽  
pp. 1516-1521
Author(s):  
Qiang Cheng ◽  
Zhuo Qi ◽  
Kai Li ◽  
Li Gang Cai ◽  
Dong Lu

The double ball bar is widely used because it can quickly, easily and cost-effectively detect and evaluate the accuracy of CNC machine tools. But since the error recognition algorithm based on the double ball bar ignores the quadratic item, its recognition accuracy would be reduced. In this paper, an improved CNC verticality error and position error identification formula, combined with the machine tool error model to deduce a new error recognition model of double ball bar measurement is proposed. It can be drawn that the accuracy of the model are better than the existing methods because it keeps the second item in the derivation process of the model.


2012 ◽  
Vol 220-223 ◽  
pp. 348-354 ◽  
Author(s):  
Shuan Qiang Yang ◽  
Shu Wen Lin

A method for fast measuring and identify the six geometric errors of each rotary axes in Four- axis machining center was invented. The method adopted the ball-bar to measure the X, Y, Z direction deviations of the centre block installed on the rotary table in the different rotation angle. And deduced the geometric error identification model in rotary axes based homogeneous transformation, and then identify the axis of the six basic geometric errors. in order to reduce the influence of the inaccuracy of the ball-bar and the reference point position, this paper put forward new method based on the analysis of the sensitivity matrix method, used to guide rational distribution points, so as to improve the error identification accuracy.


Sign in / Sign up

Export Citation Format

Share Document