ball bar
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 11 (19) ◽  
pp. 8929
Author(s):  
Konrad Kobiela ◽  
Michał Jedynak ◽  
Wiktor Harmatys ◽  
Marcin Krawczyk ◽  
Jerzy A. Sładek

The laser projector based on the laser galvanometer scanning system enables the projection of CAD-based laser images onto geometrical objects. Furthermore, the system can perform a scan of components in order to control proper positioning (e.g., welded structures). We decided to conduct research aimed at determining the suitability of such systems for length measurements and assess their accuracy. These systems are commonly calibrated with the use of flat calibration boards, although their capability of projecting and scanning 3D objects. For this reason, a new method based on ISO 10360 has been proposed. Analysis of the system’s ability to perform length measurements, selection of a reference standard, and the tested device accuracy were the main objectives of the study. A ball-bar with a nominal length of 3000 mm was chosen as a reference standard. Positions of the reference element in the workspace were determined, and three series of five measured deviations were performed in each setting. The obtained values of measurement errors prove that it is possible to use ball-bar standards to assess the accuracy of the described systems, which is defined by the equation MPE(E0) = ±0.5 mm. The proposed method could be adapted to perform more complex analyzes in this area.


2021 ◽  
Vol 15 (5) ◽  
pp. 590-598
Author(s):  
Nikolas Alexander Theissen ◽  
Monica Katherine Gonzalez ◽  
Asier Barrios ◽  
Andreas Archenti ◽  
◽  
...  

This article presents a procedure for the quasi-static compliance calibration of serial articulated industrial manipulators. Quasi-static compliance refers to the apparent stiffness displayed by manipulators at low-velocity movements, i.e., from 50 to 250 mm/s. The novelty of the quasi-static compliance calibration procedure lies in the measurement phase, in which the quasi-static deflections of the manipulator’s end effector are measured under movement along a circular trajectory. The quasi-static stiffness might be a more applicable model parameter, i.e., representing the actual manipulator more accurately, for manipulators at low-velocity movements. This indicates that the quasi-static robot model may yield more accurate estimates for the trajectory optimization compared with static stiffness in the implementation phase. This study compares the static and apparent quasi-static compliance. The static deflections were measured at discretized static configurations along circular trajectories, whereas the quasi-static deflections were measured under circular motion along the same trajectories. Loads of different magnitudes were induced using the Loaded Double Ball Bar. The static and quasi-static displacements were measured using a linear variable differential transformer embedded in the Loaded Double Ball Bar and a Leica AT901 laser tracker. These measurement procedures are implemented in a case study on a large serial articulated industrial manipulator in five different positions of its workspace. This study shows that the measured quasi-static deflections are bigger than the measured static deflections. This, in turn, indicates a significant difference between the static and apparent quasi-static compliance. Finally, the implementation of the model parameters to improve the accuracy of robots and the challenges in realizing cost-efficient compliance calibration are discussed.


2021 ◽  
pp. 002029402110108
Author(s):  
Hongtao Yang ◽  
Mei Shen ◽  
Li Li ◽  
Yu Zhang ◽  
Qun Ma ◽  
...  

To address the problems of the low accuracy of geometric error identification and incomplete identification results of the linear axis detection of computer numerical control (CNC) machine tools, a new 21-item geometric error identification method based on double ball-bar measurement was proposed. The model between the double ball-bar reading and the geometric error term in each plane was obtained according to the three-plane arc trajectory measurement. The mathematical model of geometric error components of CNC machine tools is established, and the error fitting coefficients are solved through the beetle antennae search particle swarm optimization (BAS–PSO) algorithm, in which 21 geometric errors, including roll angle errors, were identified. Experiments were performed to compare the optimization effect of the BAS–PSO and PSO and BAS and genetic particle swarm optimization (GA–PSO) algorithms. Experimental results show that the PSO algorithm is trapped in the local optimum, and the BAS–PSO is superior to the other three algorithms in terms of convergence speed and stability, has higher identification accuracy, has better optimization performance, and is suitable for identifying the geometric error coefficient of CNC machine tools. The accuracy and validity of the identification results are verified by the comparison with the results of the individual geometric errors detected through laser interferometer experiments. The identification accuracy of the double ball-bar is below 2.7 µm. The proposed identification method is inexpensive, has a short processing time, is easy to operate, and possesses a reference value for the identification and compensation of the linear axes of machine tools.


2020 ◽  
Vol 109 (9-12) ◽  
pp. 2615-2628
Author(s):  
Kai Xu ◽  
Guolong Li ◽  
Kun He ◽  
Changjiu Xia ◽  
Zheyu Li

2020 ◽  
Author(s):  
Ying zhi Zhang ◽  
Gong chang Ren ◽  
Hai tao Li

Sign in / Sign up

Export Citation Format

Share Document