scholarly journals Optical data transmission at ultrahigh speeds, beyond 40Tb/s, based on a soliton crystal micro-comb chip source

Author(s):  
David Moss

Abstract Micro-combs [1-4] - optical frequency combs generated by integrated micro-cavity resonators – offer the full potential of their bulk counterparts [5,6], but in an integrated footprint. The discovery of temporal soliton states (DKS – dissipative Kerr solitons) [4,7-11] as a means of mode-locking micro-combs has enabled breakthroughs in many fields including spectroscopy [12,13], microwave photonics [14], frequency synthesis [15], optical ranging [16,17], quantum sources [18,19], metrology [20,21] and more. One of their most promising applications has been optical fibre communications where they have enabled massively parallel ultrahigh capacity multiplexed data transmission [22,23]. Here, by using a new and powerful class of micro-comb called “soliton crystals” [11], we achieve unprecedented data transmission over standard optical fibre using a single integrated chip source. We demonstrate a line rate of 44.2 Terabits per second (Tb/s) using the telecommunications C-band at 1550nm with a spectral efficiency – a critically important performance metric - of 10.4 bits/s/Hz. Soliton crystals exhibit robust and stable generation and operation as well as a high intrinsic efficiency that, together with a low soliton micro-comb spacing of 48.9 GHz enable the use of a very high coherent data modulation format of 64 QAM (quadrature amplitude modulated). We demonstrate error free transmission over 75 km of standard optical fibre in the laboratory as well as in a field trial over an installed metropolitan optical fibre network. These experiments were greatly aided by the ability of the soliton crystals to operate without stabilization or feedback control. This work demonstrates the capability of optical soliton crystal micro-combs to perform in demanding and practical optical communications networks.

2020 ◽  
Author(s):  
David Moss ◽  
Roberto Morandotti ◽  
Arnan Mitchell ◽  
xingyuan xu ◽  
Jiayang Wu ◽  
...  

<p><b>Micro-combs - optical frequency combs generated by integrated micro-cavity resonators – offer the full potential of their bulk counterparts, but in an integrated footprint. The discovery of temporal soliton states (DKS – dissipative Kerr solitons) as a means of mode-locking micro-combs has enabled breakthroughs in many fields including spectroscopy, microwave photonics, frequency synthesis, optical ranging, quantum sources, metrology and more. One of their most promising applications has been optical fibre communications where they have enabled massively parallel ultrahigh capacity multiplexed data transmission. Here,</b><b> by using a new and powerful class of micro-comb called “soliton crystals”, we achieve unprecedented data transmission over standard optical fibre using a single integrated chip source. We demonstrate a line rate of 44.2 Terabits per second (Tb/s) using the telecommunications C-band at 1550nm with a spectral efficiency – a critically important performance metric - of 10.4 bits/s/Hz. Soliton crystals exhibit robust and stable generation and operation as well as a high intrinsic efficiency that, together with a low soliton micro-comb spacing of 48.9 GHz enable the use of a very high coherent data modulation format of 64 QAM (quadrature amplitude modulated). We demonstrate error free transmission over 75 km of standard optical fibre in the laboratory as well as in a field trial over an installed metropolitan optical fibre network. These experiments were greatly aided by the ability of the soliton crystals to operate without stabilization or feedback control. This work demonstrates the capability of optical soliton crystal micro-combs to perform in demanding and practical optical communications networks.</b><br></p>


2020 ◽  
Author(s):  
David Moss ◽  
Roberto Morandotti ◽  
Arnan Mitchell ◽  
xingyuan xu ◽  
Jiayang Wu ◽  
...  

<p><b>Micro-combs - optical frequency combs generated by integrated micro-cavity resonators – offer the full potential of their bulk counterparts, but in an integrated footprint. The discovery of temporal soliton states (DKS – dissipative Kerr solitons) as a means of mode-locking micro-combs has enabled breakthroughs in many fields including spectroscopy, microwave photonics, frequency synthesis, optical ranging, quantum sources, metrology and more. One of their most promising applications has been optical fibre communications where they have enabled massively parallel ultrahigh capacity multiplexed data transmission. Here,</b><b> by using a new and powerful class of micro-comb called “soliton crystals”, we achieve unprecedented data transmission over standard optical fibre using a single integrated chip source. We demonstrate a line rate of 44.2 Terabits per second (Tb/s) using the telecommunications C-band at 1550nm with a spectral efficiency – a critically important performance metric - of 10.4 bits/s/Hz. Soliton crystals exhibit robust and stable generation and operation as well as a high intrinsic efficiency that, together with a low soliton micro-comb spacing of 48.9 GHz enable the use of a very high coherent data modulation format of 64 QAM (quadrature amplitude modulated). We demonstrate error free transmission over 75 km of standard optical fibre in the laboratory as well as in a field trial over an installed metropolitan optical fibre network. These experiments were greatly aided by the ability of the soliton crystals to operate without stabilization or feedback control. This work demonstrates the capability of optical soliton crystal micro-combs to perform in demanding and practical optical communications networks.</b><br></p>


2020 ◽  
Author(s):  
David Moss ◽  
Roberto Morandotti ◽  
Arnan Mitchell ◽  
xingyuan xu ◽  
Jiayang Wu ◽  
...  

<p><b>Micro-combs - optical frequency combs generated by integrated micro-cavity resonators – offer the full potential of their bulk counterparts, but in an integrated footprint. The discovery of temporal soliton states (DKS – dissipative Kerr solitons) as a means of mode-locking micro-combs has enabled breakthroughs in many fields including spectroscopy, microwave photonics, frequency synthesis, optical ranging, quantum sources, metrology and more. One of their most promising applications has been optical fibre communications where they have enabled massively parallel ultrahigh capacity multiplexed data transmission. Here,</b><b> by using a new and powerful class of micro-comb called “soliton crystals”, we achieve unprecedented data transmission over standard optical fibre using a single integrated chip source. We demonstrate a line rate of 44.2 Terabits per second (Tb/s) using the telecommunications C-band at 1550nm with a spectral efficiency – a critically important performance metric - of 10.4 bits/s/Hz. Soliton crystals exhibit robust and stable generation and operation as well as a high intrinsic efficiency that, together with a low soliton micro-comb spacing of 48.9 GHz enable the use of a very high coherent data modulation format of 64 QAM (quadrature amplitude modulated). We demonstrate error free transmission over 75 km of standard optical fibre in the laboratory as well as in a field trial over an installed metropolitan optical fibre network. These experiments were greatly aided by the ability of the soliton crystals to operate without stabilization or feedback control. This work demonstrates the capability of optical soliton crystal micro-combs to perform in demanding and practical optical communications networks.</b><br></p>


2020 ◽  
Author(s):  
David Moss

Micro-combs [1-4] - optical frequency combs generated by integrated micro-cavity resonators – offer the full potential of their bulk counterparts [5,6], but in an integrated footprint. The discovery of temporal soliton states (DKS – dissipative Kerr solitons) [4,7-11] as a means of mode-locking micro-combs has enabled breakthroughs in many fields including spectroscopy [12,13], microwave photonics [14], frequency synthesis [15], optical ranging [16,17], quantum sources [18,19], metrology [20,21] and more. One of their most promising applications has been optical fibre communications where they have enabled massively parallel ultrahigh capacity multiplexed data transmission [22,23]. Here, by using a new and powerful class of micro-comb called “soliton crystals” [11], we achieve unprecedented data transmission over standard optical fibre using a single integrated chip source. We demonstrate a line rate of 44.2 Terabits per second (Tb/s) using the telecommunications C-band at 1550nm with a spectral efficiency – a critically important performance metric - of 10.4 bits/s/Hz. Soliton crystals exhibit robust and stable generation and operation as well as a high intrinsic efficiency that, together with a low soliton micro-comb spacing of 48.9 GHz enable the use of a very high coherent data modulation format of 64 QAM (quadrature amplitude modulated). We demonstrate error free transmission over 75 km of standard optical fibre in the laboratory as well as in a field trial over an installed metropolitan optical fibre network. These experiments were greatly aided by the ability of the soliton crystals to operate without stabilization or feedback control. This work demonstrates the capability of optical soliton crystal micro-combs to perform in demanding and practical optical communications networks.


2021 ◽  
Author(s):  
David Moss

<p>We report world record high data transmission over standard optical fiber from a single optical source. We achieve a line rate of 44.2 Terabits per second (Tb/s) employing only the C-band at 1550nm, resulting in a spectral efficiency of 10.4 bits/s/Hz. We use a new and powerful class of micro-comb called soliton crystals that exhibit robust operation and stable generation as well as a high intrinsic efficiency that, together with an extremely low spacing of 48.9 GHz enables a very high coherent data modulation format of 64 QAM. We achieve error free transmission across 75 km of standard optical fiber in the lab and over a field trial with a metropolitan optical fiber network. This work demonstrates the ability of optical micro-combs to exceed other approaches in performance for the most demanding practical optical communications applications.</p>


2020 ◽  
Author(s):  
David Moss

We report world record high data transmission over standard optical fiber from a single optical source. We achieve a line rate of 44.2 Terabits per second (Tb/s) employing only the C-band at 1550nm, resulting in a spectral efficiency of 10.4 bits/s/Hz. We use a new and powerful class of micro-comb called soliton crystals that exhibit robust operation and stable generation as well as a high intrinsic efficiency that, together with an extremely low spacing of 48.9 GHz enables a very high coherent data modulation format of 64 QAM. We achieve error free transmission across 75 km of standard optical fiber in the lab and over a field trial with a metropolitan optical fiber network. This work demonstrates the ability of optical micro-combs to exceed other approaches in performance for the most demanding practical optical communications applications.


Author(s):  
Mengxi Tan ◽  
Mike Xu ◽  
David Moss

We report world record high data transmission over standard optical fiber from a single optical source. We achieve a line rate of 44.2 Terabits per second (Tb/s) employing only the C-band at 1550nm, resulting in a spectral efficiency of 10.4 bits/s/Hz. We use a new and powerful class of micro-comb called soliton crystals that exhibit robust operation and stable generation as well as a high intrinsic efficiency that, together with an extremely low spacing of 48.9 GHz enables a very high coherent data modulation format of 64 QAM. We achieve error free transmission across 75 km of standard optical fiber in the lab and over a field trial with a metropolitan optical fiber network. This work demonstrates the ability of optical micro-combs to exceed other approaches in performance for the most demanding practical optical communications applications.


2020 ◽  
Author(s):  
David Moss

We report world record high data transmission over standard optical fiber from a single optical source. We achieve a line rate of 44.2 Terabits per second (Tb/s) employing only the C-band at 1550nm, resulting in a spectral efficiency of 10.4 bits/s/Hz. We use a new and powerful class of micro-comb called soliton crystals that exhibit robust operation and stable generation as well as a high intrinsic efficiency that, together with an extremely low spacing of 48.9 GHz enables a very high coherent data modulation format of 64 QAM. We achieve error free transmission across 75 km of standard optical fiber in the lab and over a field trial with a metropolitan optical fiber network. This work demonstrates the ability of optical micro-combs to exceed other approaches in performance for the most demanding practical optical communications applications.


Author(s):  
Mengxi Tan ◽  
Bill Corcoran ◽  
Xingyuan Xu ◽  
Jiayang Wu ◽  
Andreas Boes ◽  
...  

We report world record high data transmission over standard optical fiber from a single optical source. We achieve a line rate of 44.2 Terabits per second (Tb/s) employing only the C-band at 1550nm, resulting in a spectral efficiency of 10.4 bits/s/Hz. We use a new and powerful class of micro-comb called soliton crystals that exhibit robust operation and stable generation as well as a high intrinsic efficiency that, together with an extremely low spacing of 48.9 GHz enables a very high coherent data modulation format of 64 QAM. We achieve error free transmission across 75 km of standard optical fiber in the lab and over a field trial with a metropolitan optical fiber network. This work demonstrates the ability of optical micro-combs to exceed other approaches in performance for the most demanding practical optical communications applications.


2021 ◽  
Author(s):  
Mengxi Tan ◽  
Xingyuan Xu ◽  
David Moss

Abstract We report ultrahigh bandwidth applications of Kerr microcombs to optical neural networks and to optical data transmission, at data rates from 44 Terabits/s (Tb/s) to approaching 100 Tb/s. Convolutional neural networks (CNNs) are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to greatly reduce the network complexity and enhance the accuracy for machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis [1-7]. Optical neural networks can dramatically accelerate the computing speed to overcome the inherent bandwidth bottleneck of electronics. We use a new and powerful class of micro-comb called soliton crystals that exhibit robust operation and stable generation as well as a high intrinsic efficiency with an extremely low spacing of 48.9 GHz. We demonstrate a universal optical vector convolutional accelerator operating at 11 Tera-OPS/s (TOPS) on 250,000 pixel images for 10 kernels simultaneously — enough for facial image recognition. We use the same hardware to sequentially form a deep optical CNN with ten output neurons, achieving successful recognition of full 10 digits with 900 pixel handwritten digit images. We also report world record high data transmission over standard optical fiber from a single optical source, at 44.2 Terabits/s over the C-band, with a spectral efficiency of 10.4 bits/s/Hz, with a coherent data modulation format of 64 QAM. We achieve error free transmission across 75 km of standard optical fiber in the lab and over a field trial with a metropolitan optical fiber network. Our work demonstrates the ability of optical soliton crystal micro-combs to exceed other approaches in performance for the most demanding practical optical communications applications.


Sign in / Sign up

Export Citation Format

Share Document