frequency synthesis
Recently Published Documents


TOTAL DOCUMENTS

499
(FIVE YEARS 33)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gregory Moille ◽  
Edgar F. Perez ◽  
Jordan R. Stone ◽  
Ashutosh Rao ◽  
Xiyuan Lu ◽  
...  

AbstractBroadband and low-noise microresonator frequency combs (microcombs) are critical for deployable optical frequency measurements. Here we expand the bandwidth of a microcomb far beyond its anomalous dispersion region on both sides of its spectrum through spectral translation mediated by mixing of a dissipative Kerr soliton and a secondary pump. We introduce the concept of synthetic dispersion to qualitatively capture the system’s key physical behavior, in which the second pump enables spectral translation through four-wave mixing Bragg scattering. Experimentally, we pump a silicon nitride microring at 1063 nm and 1557 nm to enable soliton spectral translation, resulting in a total bandwidth of 1.6 octaves (137–407 THz). We examine the comb’s low-noise characteristics, through heterodyne beat note measurements across its spectrum, measurements of the comb tooth spacing in its primary and spectrally translated portions, and their relative noise. These ultra-broadband microcombs provide new opportunities for optical frequency synthesis, optical atomic clocks, and reaching previously unattainable wavelengths.


2021 ◽  
Vol 11 (13) ◽  
pp. 5923
Author(s):  
Yao Lu ◽  
Dejian Li ◽  
Shiwei Jia ◽  
Kai Wang

Aiming at the rock-socketed pile in the soft rock area, this paper studies the inherent constitutive relationship between the vertical restraint stiffness at the pier bottom and the bearing capacity of the pile foundation. A new method to evaluate the bearing capacity of the pile foundation is proposed. Based on the Rayleigh energy method and the Southwell frequency synthesis method, the analytical expression of the vertical vibration fundamental frequency of the pier was calculated, and the constraint stiffness expression of the pier bottom was derived. By investigating the impact of parameters on the bearing capacity coefficient of the pile foundation, the fitting formula of the bearing capacity coefficient was obtained by multiple linear regression. Then, with this method, the vertical fundamental frequency of the pier was obtained through a field dynamic test to calculate the vertical constraint stiffness and evaluate the bearing capacity of the rock-socketed pile in the soft rock area. This method can overcome the shortcomings of the traditional static load test method, such as the high cost, long cycle, and poor representativeness. Finally, this method’s accuracy was verified by comparing field measurements and finite element simulation results. The results show that the difference between the code design constraint stiffness and the constraint stiffness by the frequency synthesis method was about 0.7%, and the bearing capacity difference between the analytical solution and the numerical simulation was small. The new method is accurate and effective.


2021 ◽  
Author(s):  
Tarek Khan

Subthreshold Frequency Synthesis For Implantable Medical Devices


2021 ◽  
Author(s):  
Tarek Khan

Subthreshold Frequency Synthesis For Implantable Medical Devices


2021 ◽  
Author(s):  
David Moss

Abstract Micro-combs [1-4] - optical frequency combs generated by integrated micro-cavity resonators – offer the full potential of their bulk counterparts [5,6], but in an integrated footprint. The discovery of temporal soliton states (DKS – dissipative Kerr solitons) [4,7-11] as a means of mode-locking micro-combs has enabled breakthroughs in many fields including spectroscopy [12,13], microwave photonics [14], frequency synthesis [15], optical ranging [16,17], quantum sources [18,19], metrology [20,21] and more. One of their most promising applications has been optical fibre communications where they have enabled massively parallel ultrahigh capacity multiplexed data transmission [22,23]. Here, by using a new and powerful class of micro-comb called “soliton crystals” [11], we achieve unprecedented data transmission over standard optical fibre using a single integrated chip source. We demonstrate a line rate of 44.2 Terabits per second (Tb/s) using the telecommunications C-band at 1550nm with a spectral efficiency – a critically important performance metric - of 10.4 bits/s/Hz. Soliton crystals exhibit robust and stable generation and operation as well as a high intrinsic efficiency that, together with a low soliton micro-comb spacing of 48.9 GHz enable the use of a very high coherent data modulation format of 64 QAM (quadrature amplitude modulated). We demonstrate error free transmission over 75 km of standard optical fibre in the laboratory as well as in a field trial over an installed metropolitan optical fibre network. These experiments were greatly aided by the ability of the soliton crystals to operate without stabilization or feedback control. This work demonstrates the capability of optical soliton crystal micro-combs to perform in demanding and practical optical communications networks.


Author(s):  
Alessio Santiccioli

AbstractThe quest for ubiquitous wireless connectivity, drives an increasing demand for compact and efficient means of frequency generation. Conventional synthesizer options, however, generally trade one requirement for the other, achieving either excellent levels of efficiency by leveraging LC-oscillators, or a very compact area by relying on ring-oscillators. This chapter describes a recently introduced class of inductorless frequency synthesizers, based on the periodic realignment of a ring-oscillator, that have the potential to break this tradeoff. After analyzing their jitter-power product, the conditions that ensure optimum performance are derived and a novel digital-to-time converter range-reduction technique is introduced, to enable low-jitter and low-power fractional-N frequency synthesis. A prototype, which implements the proposed design guidelines and techniques, has been fabricated in 65 nm CMOS. It occupies a core area of 0:0275 mm$$^{2}$$ 2 and covers the 1:6-to-3:0 GHz range, achieving an absolute rms jitter (integrated from 30 kHz-to-30 MHz) of 397 fs at 2:5 mW power. With a corresponding jitter-power figure-of-merit of −244 dB in the fractional-N mode, the prototype outperforms prior state-of-the-art inductorless frequency synthesizers.


Author(s):  
Luca Bertulessi

AbstractThe fractional-N frequency synthesis based on Digital Phase Locked Loop (DPLLs) has become a conventional design approach for the new radio wireless applications. The advantage of the digitally-intensive design style is the possibility to implement low-power and very accurate digital calibration techniques. Most of these algorithms run in the background tracking PVT variations and either relax or, in some cases, completely remove the performance limitations due to analog impairments. Moreover, the digital loop filter area is practically negligible with respect to the one in analog PLLs. These benefits become even more relevant in the scaled CMOS technology nodes. This chapter identifies the design parameters of a standard DPLL architecture and proposes a novel locking scheme to overcome the intrinsic limitations of the digital frequency synthesizers approach. To prove this new scheme a sub-6 GHz fractional-N synthesizer has been implemented in 65 nm CMOS. The synthesizer has an output frequency from 3.59 GHz to 4.05 GHz. The integrated output jitter is 182fs and the power consumption of 5.28 mW from 1.2 V power supply leads to a FoM of −247.5 dB. This topology exploits a novel locking technique that guarantee a locking time of 5.6 s, for a frequency step of 364 MHz, despite the use of a single bit phase detector.


Sign in / Sign up

Export Citation Format

Share Document