An Analytical Study of Some Problems in Partial Differential Equations With Applications to Fluid Dynamics and Wave Propagation

1992 ◽  
Author(s):  
George H. Knightly
Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 545-554
Author(s):  
Asghar Ali ◽  
Aly R. Seadawy ◽  
Dumitru Baleanu

AbstractThis article scrutinizes the efficacy of analytical mathematical schemes, improved simple equation and exp(-\text{Ψ}(\xi ))-expansion techniques for solving the well-known nonlinear partial differential equations. A longitudinal wave model is used for the description of the dispersion in the circular rod grounded via transverse Poisson’s effect; similarly, the Boussinesq equation is used for extensive wave propagation on the surface of water. Many other such types of equations are also solved with these techniques. Hence, our methods appear easier and faster via symbolic computation.


1998 ◽  
Vol 12 (05) ◽  
pp. 601-607 ◽  
Author(s):  
M. Andrecut

Wave propagation in excitable media provides an important example of spatiotemporal self-organization. The Belousov–Zhabotinsky (BZ) reaction and the impulse propagation along nerve axons are two well-known examples of this phenomenon. Excitable media have been modelled by continuous partial differential equations and by discrete cellular automata. Here we describe a simple three-states cellular automaton model based on the properties of excitation and recovery that are essential to excitable media. Our model is able to reproduce the dynamics of patterns observed in excitable media.


2021 ◽  
Vol 19 ◽  
pp. 105-116
Author(s):  
Sven Köppel ◽  
Bernd Ulmann ◽  
Lars Heimann ◽  
Dirk Killat

Abstract. Analog computers can be revived as a feasible technology platform for low precision, energy efficient and fast computing. We justify this statement by measuring the performance of a modern analog computer and comparing it with that of traditional digital processors. General statements are made about the solution of ordinary and partial differential equations. Computational fluid dynamics are discussed as an example of large scale scientific computing applications. Several models are proposed which demonstrate the benefits of analog and digital-analog hybrid computing.


Sign in / Sign up

Export Citation Format

Share Document