An Evaluation of Honey Bee Foraging Activity and Pollination Efficacy for Male-Sterile Cotton1

Crop Science ◽  
1985 ◽  
Vol 25 (2) ◽  
pp. 211 ◽  
Author(s):  
Gordon D. Waller ◽  
Joseph O. Moffett ◽  
Gerald M. Loper ◽  
Joseph H. Martin
Apidologie ◽  
2006 ◽  
Vol 38 (1) ◽  
pp. 122-123 ◽  
Author(s):  
Bernardo Sabugosa-Madeira ◽  
Ilda Abreu ◽  
Helena Ribeiro ◽  
Alexandra Gomes ◽  
Mário Cunha

Insects ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 34 ◽  
Author(s):  
Ann Gaffney ◽  
Björn Bohman ◽  
Stephen Quarrell ◽  
Philip Brown ◽  
Geoff Allen

Pollination rates in hybrid carrot crops remain limited after introduction of honey bee hives. In this study, honey bee foraging behaviour was observed in commercial hybrid carrot seed crops. Significantly more visits were made to male-fertile (MF) rather than cytoplasmically male-sterile (CMS) flowers. Pollen was collected from bees returning to a hive, to determine daily variation in pollen loads collected and to what level the bees were foraging for carrot pollen. Honey bees visited a wide range of alternative pollen sources and made relatively few visits to carrot plants throughout the period of flowering. Visitation rates to other individual floral sources fluctuated but visitation to carrot was consistently low. The underlying rate of carrot pollen visits among collecting trips was modelled and estimated to be as low as 1.4%, a likely cause of the limited success implementing honey bee hives in carrot crops.


2018 ◽  
Vol 27 (2) ◽  
pp. 349-360 ◽  
Author(s):  
Bahram Kheradmand ◽  
Julian Cassano ◽  
Selena Gray ◽  
James C. Nieh

2021 ◽  
Author(s):  
Asem Surindro Singh ◽  
Machathoibi Chanu Takhellambam

The foraging of honey bees is one of the most well organized and admirable behaviors that exist among social insects. In behavioral studies, these beautiful insects have been extensively used for understanding time-space learning, landmark use and concept of learning etc. Highly organized behaviors such as social interaction and communication are systematically well organized behavioral components of honeybee foraging. Over the last two decades, understanding the regulatory mechanisms underlying honey bee foraging at the cellular and molecular levels has been increasingly interested to several researchers. Upon the search of regulatory genes of brain and behavior, immediate early (IE) genes are considered as tool to begin the investigation. Our two recent studies, have demonstrated three IE genes namely Egr-1, Hr38 and kakusei having a role in the daily foraging of bees and their association with learning and memory during the foraging. These studies further evidence that IE genes can be used as a tool in finding the specific molecular/cellular players of foraging in honey bees and its behavioral components such as learning, memory, social interaction, social communication etc. In this article we provide the details of the method of sample collection at different times during foraging to investigate the foraging regulatory molecules. Key words: Honey bee foraging, learning and memory, immediate early genes, Egr-1, Hr38, Kakusei.


2021 ◽  
Vol 1 ◽  
Author(s):  
Asem Surindro Singh ◽  
Machathoibi Chanu Takhellambam

The foraging of honey bees is one of the most well-organized and admirable behaviors that exist among social insects. In behavioral studies, these beautiful insects have been extensively used for understanding time–space learning, landmark use, and the concept of learning. Highly organized behaviors such as social interaction and communication are systematically well-organized behavioral components of honey bee foraging. Over the last two decades, understanding the regulatory mechanisms underlying honey bee foraging at the cellular and molecular levels has been increasingly interested to several researchers. Upon the search of regulatory genes of brain and behavior, immediate early (IE) genes are considered as a good tool to begin the search investigation. Our two recent studies have demonstrated three IE genes, namely, Egr-1, Hr38, and Kakusei, playing a role in the daily foraging of bees and their association with learning and memory during foraging. These studies further evidence that IE genes can be used as a tool in finding the specific molecular/cellular players of foraging in honey bees and its behavioral components such as learning, memory, social interaction, and social communication. In this article, we provide the details of the method of sample collection at different times during foraging to investigate the foraging regulatory molecules.


Sign in / Sign up

Export Citation Format

Share Document